
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

U niversity  M icrofilms In ternational 
A Bell & Howell Inform ation C o m p an y  

300  N orth  Z e e b  R o ad . Ann Arbor. Ml 48106-1346  USA 
3 1 3 /7 6 1 -4 7 0 0  8 0 0 /5 2 1 -0 6 0 0



www.manaraa.com



www.manaraa.com

Order Number 9123983

mean-variance serial replacement decision model

Brown, Matthew J., Ph.D.

The University of Michigan, 1991

Copyright ©1991 by Brown, M atthew J. All rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106



www.manaraa.com



www.manaraa.com

A MEAN-VARIANCE SERIAL 
REPLACEMENT DECISION MODEL

by
Matthew J. Brown

A dissertation submitted in partial fulfillment 
of the requirements for the degree of 

Doctor of Philosophy 
(Industrial and Operations Engineering) 

in The University of Michigan 
1991

Doctoral Committee:
Associate Professor Jack R. Lohmann, Chair 
Associate Professor Anastassios N. Perakis 
Assistant Professor Medini R. Singh 
Associate Professor Candace A. Yano



www.manaraa.com



www.manaraa.com

• t
I learned this, at least, by my experiment; that if one advances confidently in the 

direction of his dreams, and endeavors to live the life which he has imagined, he will 
meet with a success unexpected in common hours. He will put some things behind, 
will pass an invisible boundary; new, universal, and more liberal laws will begin 
to establish themselves around and within him; or the old laws be expanded, and 
interpreted in his favor in a more liberal sense, and he will live with the license of a 
higher order of beings. In proportion as he simplifies his life, the laws of the universe 
will appear less complex, and solitude will not be solitude, nor poverty poverty, nor 
weakness weakness. If you have built castles in the air, your work need not be lost; 
that is where they should be. Now put the foundations under them.

Henry David Thoreau 
Walden 
1846
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CHAPTER I

INTRODUCTION

Questions about what equipment to replace, what new technology to adopt, and 

when to do it arise in a variety of situations. Studies have indicated that replacement 

projects consume a significant portion of a firm’s capital budget (one study estimates 

as much as 50 percent [15]). As Park and Sharp [46] note, “how the capital is to 

be allocated is one of the most important and most difficult decisions that any firm 

must make.” Thus, one key to the success of a firm is to make intelligent replacement 

decisions.

A major subset of replacement problems, and the focus of this dissertation, involve 

replacement of a single asset with another single asset. These problems are commonly 

called serial replacement problems. Typically, for such problems, the decision to be 

made is whether to either keep an asset that is currently providing a service or 

replace it with one of several alternative new assets. The service is usually expected 

to be required much longer than any asset currently available can remain in service. 

Thus, similar decisions will have to be made in the future and incorporated into 

the current analysis because they impact the current decision. The objective is to 

determine the “most economical” sequence of assets to provide the required service 

to the horizon. A sequence of assets is completely described by specifying for each

1
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asset in the sequence: the asset type, its time of installation, and its length of service.

Since assets available in the future can differ technologically and monetarily from 

assets currently available, a mechanism is needed to characterize these future as­

sets. It is often assumed that assets evolve over time and that future versions are 

related to the assets currently available by a function of the time they are installed. 

This requires specification of only the monetary consequences that would result from 

installing, operating, and replacing each of the assets available currently and the 

functions to describe the change in the monetary consequences for future assets. 

Uncertainty about the monetary consequences can be modeled with stochastic cash 

flows.

Much of prior replacement research has assumed typically that either the cash 

flows that describe the monetary consequences resulting from an asset providing 

service are deterministic or that the decision maker’s (DM’s) objective is to maximize 

expected value (EV). This dissertation develops a model that incorporates a DM’s 

risk aversion directly into the replacement analysis, in the form of a utility function. 

It also studies the model under a wide range of scenarios and provides some insight 

regarding the conditions under which use of an EV model may be undesirable.

Utility theory, as Currim and Sarin [10] note uis the dominant paradigm for 

decision making under risk in a variety of disciplines, such as economics, finance, and 

marketing.” Recently, Oakford, Bhimjee, and Salazar [41], Thompson and Thuesen 

[55], and Ramis, Thuesen, and Barr [50] have used utility within a capital budgeting 

framework. However, utility has yet to be considered in replacement models. A 

model incorporating utility is desirable because:

•  DMs often view the impact of monetary gains and losses differently [54]. As 

losses become greater, the impact of each additional dollar lost becomes greater.
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Similarly as gains increase, the impact of each additional dollar gained becomes 

less. Thus, the use of an EV criterion may be inconsistent with the DM’s views.

•  Risk is considered directly, thus adding a dimension that traditional sensitivity 

analysis cannot address and EV only partly addresses.

•  A utility-based model can solve a wider range of problems since EV is a special 

case of expected utility (EU).

Replacement problems with an objective of maximizing EU can be difficult to 

solve for at least three reasons. First, the monetary consequences which result from 

installing, operating, and replacing assets in the future must be forecasted. With 

rapid changes in technology and the need to adopt products and services to a quickly 

changing market, forecasting the required data can be difficult. Second, the num­

ber of different asset sequences that could provide the required service is typically 

so large that total enumeration is not a viable solution procedure. Dynamic pro­

gramming provides a computationally efficient approach to find an optimal solution 

for both deterministic models and stochastic models that use EV as the monetary 

objective. However, for stochastic models with an EU objective, pruning partial 

sequences is more difficult since utility is not additive. Finally, the method used to 

evaluate the attractiveness of sequences of assets must account for the temporal cash 

flows. Discounted cash flow analysis has been the most popular method used to de­

termine an equivalent measure of worth for both deterministic models and stochastic 

models with an EV monetary objective. However, for stochastic models with an EU 

objective, evaluating a given sequence of assets is not as easy. The difficulty arises 

from the presence of multiple random variables in each time period. These random 

variables can be correlated across time periods and assessing a utility function for
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multiple periods is typically more difficult than for a single period.

The research objectives of this dissertation were threefold. The first objective was 

to develop a procedure to find the sequence of highest GU. This was accomplished 

by expanding the longest path deterministic dynamic program used to find the EV 

sequence, into a branch and prune algorithm using mean-variance (MV) dominance. 

The second objective was to gain insight about replacement decisions under uncer­

tainty by studying a wide range of problems and examining the impact of a number 

of different model parameters. The third objective was to evaluate and compare 

the performance of several alternative decision procedures by performing a series of 

computational experiments.

1.1 Overview

Chapter II reviews the replacement literature. Due to the broad range of replace­

ment problems, it is helpful to describe the models in terms of a classification scheme. 

Chapter II classifies replacement models based on five characteristics: the number of 

assets providing service, the horizon, how the relevant cash flows are modeled, asset 

reliability assumptions, and the DM’s monetary objective. Methods that have been 

used in a variety of decision environments to select projects under uncertainty are 

then discussed.

The MV model, which incorporates utility directly, is discussed in Chapter III. 

The major assumptions made by the model are first described. Five alternative deci­

sion procedures that vary in level of sophistication are then described. The decision 

procedures are random, traditional, EV, certain monetary equivalent, and EU. The 

chapter concludes by developing the performance measures used for the computa­

tional experiments to evaluate and compare the different decision procedures.
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Chapter IV describes the computational experiments. A total of five experiments 

were performed. The experiments were designed to examine the ability of the EU 

decision procedure to solve a  wide range of problems, evaluate and compare the 

performance of the alternative decision procedures under a  variety of conditions, 

study the impact of both constant and decreasing risk aversion, and examine the 

sensitivity of the EU sequence to changes in the forecasts.

Finally, Chapter V provides a research summary and some possible extensions to 

the MV model.
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C H A PTER  II

LITERATURE REVIEW

Many types of assets that provide a service or produce a product are replaced 

over time. Replacement occurs when an asset fails and cannot be repaired, when the 

cost of keeping an asset operational is prohibitive, when changes in technology make 

an asset inferior or obsolete, or simply when a change is desired. A replacement 

decision typically involves a choice between either keeping a set of one or more assets 

currently in service or replacing them with a new set of assets; or if there is no set of 

assets currently in service, a choice between installing one of several alternative sets 

of new assets. In this dissertation, the term “service” may refer to both a service, 

such as transportation provided by a vehicle, or the production of products. The 

DM’s objective typically is to determine the sequence of assets that will provide the 

most economical, either lowest cost or most profitable, service for the period of time 

under consideration. The replacement decision domain is not limited to studies of 

machines found in typical manufacturing operations, but includes virtually any asset 

that provides service and is replaced.

Replacement research has been conducted actively since the late 1940s. Thus, it 

is not surprising that a  wide range of models have been developed. The models differ 

in terms of assumptions, realism, focus, scope, modeling flexibility, etc. The next

6
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section describes some major characteristics that can be used to classify replacement 

models. Different methods to select projects under uncertainty that are used in 

a variety of decision environments are then discussed. These methods could be 

incorporated into replacement models to select among alternative sequences of assets 

under uncertainty.

2.1 Background and Definitions

While detailed replacement classification schemes exist [36], five characteristics 

appear sufficient to classify most models. They are: the number of assets replaced at 

a given time, the horizon, how the relevant cash flows are modeled, the assumptions 

made about the reliability of the assets, and the DM’s monetary objective. Bach 

characteristic is described below including a brief summary of the relevant replace­

ment model literature. A more detailed summary of the literature can be found in 

Bean, Lohmann, and Smith [5] or Ganesh [15].

The num ber of assets replaced a t  a  given tim e determine whether a re­

placement model is a serial or a parallel model. “Serial” replacement models assume 

a single asset replaces another single asset, while “parallel” or “multiple” replace­

ment models assume a set of assets replace another set of assets. A set of assets can 

be modeled serially if the entire set is always replaced at the same time. The ma­

jority of the replacement models address serial rather than parallel problems. Two 

notable exceptions are the work of Leung and Tanchoco [30], and VanderVeen [56]. 

Leung and Tanchoco looked at single period model to study replacement of a subset 

of machines within an integrated system, such as a flexible manufacturing system. 

VanderVeen formulated the general problem as a mixed integer program, developed 

a set of dominance criteria and a decision variable encoding scheme to reduce the
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number of variables and constraints, and evaluated the performance of five heurist ics.

The length of time service is required is referred to as the horizon and it can be 

either “finite” or “infinite.” The most well known serial model assumes an infinite 

horizon and identically repeating future assets [16]. These two assumptions, while 

making the problem easy to solve, frequently do not model reality well. A dynamic 

programming approach which relaxed the repeatability assumption but required a 

finite horizon was developed by Wagner [58] in 1975. A more general dynamic pro­

gramming approach was introduced in 1984 by Oakford, Lohmann, and Salazar [42]. 

While still dealing only with finite horizons, the model allowed more than one asset 

type to be available at each point in time. This model was extended to the infinite 

horizon case in 1985 by Bean, Lohmann, and Smith [5]. In 1986 Lohmann [35] ex­

tended the Bean, Lohmann, and Smith model to allow for stochastic cash flows by 

combining simulation and dynamic programming.

The horizon is important because the first asset type in the optimal sequence may 

depend on the length of the horizon. While no service will be required forever, infinite 

horizons are often used to try to avoid end-of-horizon effects. For a DM unsure about 

the appropriate horizon, the equivalent finite horizon may be able to be determined 

[5]. This value provides the length of the horizon beyond which the optimal first asset 

would not change. Sometimes DMs will avoid using a replacement model because 

they feel they cannot forecast the relevant cash flows to the horizon. Instead, the 

problem is inappropriately modeled as a one time decision. Methods have been 

developed to provide a bound on the resulting error. For example, Bean, Lohmann, 

and Smith [6] have developed an error bounding procedure for a deterministic serial 

replacement model.

“Deterministic” models assume the relevan t cash flows are known with cer­
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tainty [42]. “Stochastic” models treat some or all the cash flows as uncertain, re­

quiring a DM to provide probability distributions for the uncertain cash flows [35]. 

Deterministic models are by far the most common, primarily because they tend to 

be easier to solve than stochastic models.

Replacement models fall into two categories based on the assum ptions abou t 

an  a sse t’s re liab ility  during its service life. Some models assume an asset to have a 

maximum life over which it can provide service. During this life the asset is assumed 

to never fail to the point it has to be replaced before the maximum life (e.g., Bean, 

Lohmann, and Smith [5]). Alternatively, other models have been developed which 

recognize that assets sometimes must be replaced due to failure before reaching some 

maximum service life. These models combine simple reliability ideas and replacement 

and are sometimes called “equipment inspection and replacement models.” Often, 

to model the reliability of an asset, a set of states is defined to characterize the 

possible conditions of that asset. For example, the states could represent a machine’s 

condition as new, excellent, good, fair, poor, and failed. The state of the machine in 

the next period given its current state is defined in terms of a transition probability 

matrix. Each possible decision (i.e., set of keep or replace decisions for each state) 

has a separate matrix associated with it. Since the state of the system will not be 

known until the DM reaches that point in time, the optimal sequence cannot be 

identified a priori. Instead, a DM needs to know what the best course of action is 

given the current state. Thus, the objective is to determine the optimal “policy,” 

where a policy specifies the best decision for each possible state. Such problems can 

be formulated as a Markov Decision Problem (MDP) and are discussed by Denardo 

[12], Dreyfus and Law [13], and Ross [51].

The equipment inspection and replacement models generally do not offer the
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modeling flexibility of those which assume assets do not unexpectedly fail before 

their maximum service life. Flexibility must be compromised due to the structure 

required to make the solution procedure tractable. For example, by simply allowing 

the reward received from an asset’s service to depend on the period the asset is 

installed, so that rewards are not stage invariant, nonstationary policies and added 

solution complexity may result. Further complexity is added when the DM desires to 

use utility as the basis for making decisions, as Jaquette [25] describes for a general 

MDP with an objective of maximizing expected utility for a DM with constant risk 

aversion. For these reasons, the MV model described in the next chapter does not 

consider the case of an asset that must be replaced unexpectedly before it reaches 

its maximum service life. However, the impact of failure without replacement can be 

considered by including this cost in the cash flows.

The D M ’s m onetary  objective typically has been to maximize either present 

value or future value. No utility-based replacement models were found in the liter­

ature. However, methods that consider uncertainty have been used in many other 

decision environments, and some of the related literature is discussed in the next 

section.

2.2 Project Selection Methods Under Uncertainty

Decision theory provides both descriptive and prescriptive methods for dealing 

with uncertainty. To study how DMs define and react to uncertainty in practice, a 

number of surveys have been taken. March and Shapira [38] provide an overview of 

many of these surveys and point out that while the terms “risk” and “uncertainty” 

are often used interchangeably in the literature, DMs tend to view risk in terms of 

the magnitude of possible loss. Just because a project has a wide range of possible
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outcomes (i.e., high uncertainty), does not mean it would be considered risky as 

might be the case if all the outcomes were positive. Similarly, if a project had a 

narrow range of possible outcomes, but all resulted in large losses, it may be viewed 

as quite risky. In this dissertation, uncertainty is used to refer to the variance of 

monetary outcomes.

A number of surveys have verified that DMs are risk averse, at least under certain 

conditions. For example, Swalm [53] presents plots of actual utility functions which 

exhibit the concave shape expected for risk averse DMs. MacCrimmon and Wehrung 

[37] found that DMs who were the most risk averse tend to be the most mature. 

Laughhunn, Payne, and Crum [29] found that when faced with only non-ruinous 

losses, most DMs were risk seeking in trying to overcome below-target returns. How­

ever, when ruinous losses were involved, most DMs were risk averse.

Different methods have been developed for project selection under uncertainty. 

These methods can be roughly grouped into three categories based on the level of 

sophistication. The simplest methods are based on the mean. One approach is to 

specify the expected value for each cash flow and then analyze the problem as if the 

cash flows were deterministic [22]. This approach is often combined with sensitivity 

analysis and is one of the most commonly used approaches [16]. A closely related 

approach uses the cash flow distributions. These distributions are combined across 

all periods to obtain the discounted convolution [3, 22, 23, 24, 44, 45, 57]. Once this 

net present value (NPV) distribution is obtained, projects can be compared based 

on the mean NPV. Another approach is to adjust the discount rate to reflect the 

level of risk associated with the proposal [1, 7]. The greater the risk, the higher the 

discount rate used. Once an appropriate discount rate is determined, the analysis 

can proceed using either of the two approaches just discussed.
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The second category of methods axe based on the mean and variance of the 

cash flow distributions. One approach is combine the mean and variance into a 

single measure by subtracting some fraction of the variance from the mean [46, 55]. 

The basic idea is that the more risk averse the DM, the larger the fraction of the 

variance subtracted from the mean. These single measures can then be treated as 

deterministic values and the problem solved. In a similar fashion, Park and Wu 

Yeh [47] use the mean, variance, and skewness to develop a criterion for a capital 

budgeting problem. Another approach based on the mean and variance is to use 

the NPV distribution to select the project with the greatest mean subject to some 

risk hurdle [1] (e.g., probability of losing more than $100,000 must be less than ten 

percent). Finally, a MV-dominance approach can be used [34, 39, 59]. A project is 

MV-efficient if no other project has a greater mean and equal variance, or a greater 

than or equal mean and a smaller variance. If more than one project is MV-efflcient, 

some other method must be used to make a final decision.

The third category of methods are based on the cash flow distributions and typi­

cally require specification of the DM’s utility function. Stochastic dominance can be 

used to determine if the multi-period distribution of one project dominates the multi­

period distribution of another [33], or sometimes if one NPV distribution dominates 

another. Bawa [4] provides a comprehensive bibliography of the stochastic dominance 

literature. Rarely will stochastic dominance identify the single best project, due to 

the strong nature of the dominance conditions that must be satisfied. However, 

stochastic dominance can frequently be used to screen out the most unattractive 

opportunities, leaving a set of efficient proposals for the DM to consider further. 

It also does not require specification of a utility function. The conditions under 

which stochastic dominance and MV-dominance will yield the same set of efficient
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projects has been examined by Porter and Gaumnitz [48] and Levy [32]. A different 

approach, the discounted certainty equivalent approach, requires a specific utility 

function. The certain monetary equivalent for each cash flow is computed and the 

analysis is performed as if these values were deterministic [54, 55]. Finally, a time- 

weighted or horizon EU approach can be used. For the time-weighted approach, the 

EU is computed for each period and then multiplied by a weighting factor [27,54, 55]. 

Periods farther out in time are given less weight. The values for all the periods are 

summed and this sum is then used as the single measure of desirability. The horizon 

approach is based on the NPV distribution, requiring only a single period utility 

function. Brockett and Golden [9] provide a list of the utility functions commonly 

used for modeling.

Surveys have also been taken to determine which methods are used in practice. 

Gurnani [17], in reviewing a number of different surveys, found the percentage of 

firms that explicitly account for risk varied from 15 percent to 78 percent depending 

on the survey. The most popular methods were to use risk-adjusted discount rates 

or to shorten the payback period cutoff. Farragher [14], in studying practices of 

non-industrial firms, found the activity that was rated as most difficult was assessing 

risk, followed by adjusting procedures for risk. Farragher also found the most popular 

methods were to adjust discount rates or shorten the payback period.
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CHAPTER III

M EAN-VARIANCE DECISION MODEL

The MV decision model envisions a DM who seeks to identify the best sequence 

of assets to provide a desired service over time. The DM is assumed to: 1) have 

alternative asset types from which to choose, and 2) be uncertain about the cash flow 

outcomes that would result from installing and operating each asset types available 

currently. The MV model is similar to a stochastic replacement model developed 

by Lohmann [35]. However, there are two primary differences. First, the monetary 

objective of Lohmann’s model is to maximize expected NPV, while the MV model 

uses the more general objective of maximizing EU. Second, the output the DM 

receives from each model differs. Lohmann’s approach provides the DM with point 

estimates of the probability that each of the assets currently available is the optimal 

first asset, along with an estimate of the distribution for the corresponding service 

lives and NPVs. This results in no clear decision rule for the best course of action 

to take currently. Thus, for example, if the asset type with the highest probability 

of being optimal were selected, it could, in fact, be suboptimal even in terms of 

expected NPV. (An example is provided in Appendix A.) The MV model provides 

as output the optimal sequence of assets which clearly defines the optimal current 

decision.

14
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Many different decision procedures have been suggested to solve a wide variety of 

replacement problems. In the next section, the decision environment and major as­

sumptions that characterize the replacement problems that can be considered by the 

MV model are described. Next, the five alternative decision procedures considered 

in this research are discussed. The chapter concludes by describing the performance 

measures used in the computational experiments to evaluate and compare the five 

alternative decision procedures.

3.1 Decision Environment and Major Assumptions

A l: The DM is assumed to not be subject to capital rationing and the eco­

nomic value of the service provided by an asset can be characterized by its NPV 

distribution. For simplicity, all cash flows were assumed to be expressed after taxes. 

Without capital rationing constraints, an individual replacement project can be con­

sidered independently of all other projects that would otherwise be competing for 

the available capital. This does not imply that the DM is unconcerned with capital 

budgeting, only that the current concern is selecting the best alternative for a given 

project. Once the best alternative is selected, then the DM can consider the capi­

tal rationing component and select the best set of replacement projects, and other 

productive investments, available at the current time. If a utility-based capital bud­

geting approach, such as the method of Thompson and Thuesen [54], is used, then 

choosing the best alternative for individual replacement projects based only on BV 

could result in suboptimal capital allocation.

Summarizing the value of the service provided by an asset by its NPV eliminates 

the need to develop a decision procedure which explicitly considers individual period 

cash flows. Not only may it be difficult to forecast the overall individual period cash
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flows (the convolution of all the different cash flow components for each period), but 

these will often be correlated across time, only adding to the complexity. Using the 

NPV would be reasonable for projects in which individual period cash flows were 

unlikely to cause the DM financial ruin. Since the DM typically will be uncertain 

about the cash flows to describe each currently available alternative, the overall NPVs 

are modeled as random variables.

A2: In order to be able to determine the NPV distribution of a sequence of 

assets, the NPV distribution of each asset in the sequence is assumed to be normally 

distributed. By making this assumption, the NPV of the entire sequence will also be 

normally distributed. Few distributions other than the normal are preserved under 

addition. The ability to easily determine the NPV distribution of a  sequence is 

critical in keeping the procedure used to find the sequence of highest EU tractable. 

The ease of having to specify only the mean and variance is another advantage of 

using the normal distribution.

Even if the individual period component cash flow distributions are skewed or 

bimodal, the resulting NPV may still be approximately normal. Hillier [24] noted 

that the NPV distribution is the discounted aggregation of many cash flow streams, 

and while these most likely will not be independent and identically distributed, there 

are versions of the Central Limit Theorem which exist that require less stringent 

conditions to hold. This implies:

•  The present value of each individual cash flow component (e.g., maintenance 

expense) may be closer to being normal than the distributions for the cash 

flows in each period would suggest, because the present value of a component 

is the discounted sum of these random variables.
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•  The NPV distribution, being the sum of the present values for all the indi­

vidual cash flow components, may be closer to normal than is implied by the 

distribution of the present value of the individual cash flow components.

Hillier concluded that it is often reasonable to assume the NPV distribution to be 

normal, even when the periodic distributions for each individual cash flow component 

are far from normal.

The results of Hillier suggest that forecasting the NPVs to be normally distributed 

is reasonable for a problem which has a number of uncertain cash flow components, as 

the MV model envisions. For example, sales revenues, labor costs, setup costs, scrap 

costs, rework costs, warranty costs, material costs, inventory costs, maintenance 

expenses, utility expenses, and salvage values could all be uncertain. Since many of 

the uncertain cash flow components have cash flows in each period, random variables 

will be summed both across time periods and cash flow components. The resulting 

NPV distribution should be closer to normal than both the individual period cash 

flows or the cash flow components. Forecasting the NPVs as normally distributed 

would probably not be valid when the service life of an asset is short (e.g., one period) 

and there are only a few uncertain cash flow components.

A3: The NPV of an asset being added to a sequence is assumed to be either 

independent of the NPVs of all other assets in the sequence, or correlated only with 

the NPV of the immediately preceding asset in the sequence . The latter case will 

be referred to as “Markov-correlation.” Thus, correlation is across time periods, 

not across assets available in the same period such as stock portfolio problems are 

typically modeled. There is probably little pragmatic need to develop a more elab­

orate method to model correlation because Markov-correlation captures the major 

effects, and the DM must forecast all the higher orders of correlation, which may
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quite difficult.

Correlation can be helpful in modeling the impact of the external environment on 

the NPVs. For example, consider an automobile replacement problem. The DM may 

forecast the NPVs assuming the automobile would be operated mainly on paved sur­

faces. However, if the automobile is operated frequently on gravel surfaces, then the 

maintenance costs may increase. If future automobiles were also expected to be op­

erated in an environment similar to the current automobile, then positive correlation 

could be used to capture the increased maintenance costs for future automobiles.

A4: A single asset is assumed to be in service at all times and there is a finite 

number of independent assets from which to choose at each decision point. Each asset 

is assumed to have a known, deterministic maximum service life beyond which it must 

be replaced. Any monetary consequences of an asset failing before the maximum 

service life axe assumed to be accounted for in the forecasted cash flows.

A5: When considering two investment opportunities with the same expected 

return, the DM is assumed to prefer the investment with the lower variance. To 

reflect this risk aversion, the DM’s objective is to maximize EU. The DM’s utility 

function is assumed to be a continuous, concave, monotonically increasing function 

of money. If the DM is only interested in the MV-efficient set of sequences, then the 

exact form and parameters for the utility function are not required. Expected utility 

is calculated using the NPV distribution for a  sequence of assets, requiring the DM 

to assess a single period utility function. Such a function will typically be easier to 

assess than a temporal function. Methods to assess utility functions are discussed by 

Berger [8] and Keeney and Raiffa [27]. For the computational experiments, the DM’s 

utility function is assumed to be of a specific functional form, so that the alternative 

decision procedures can be compared.
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3.2 Five Alternative Decision Procedures

Many decision procedures have been suggested for solving replacement problems. 

In the computational experiments, five alternative decision procedures were used, in­

cluding three of the most common from the literature. The alternative decision pro­

cedures include the commonly suggested traditional (TRAD), expected value (EV), 

and certain monetary equivalent (CME) approaches, in addition to the random and 

expected utility (EU) approaches. Each decision procedure is described in the next 

five subsections.

3.2.1 R andom

As described further in the next section, the performance measures developed 

for the computational experiments use the random sequence as the benchmark of 

performance. Random decision procedures have been similarly used as a benchmark 

by Baksh [l], Bean, Lohmann, and Smith [5], and VanderVeen [56]. The random 

sequence is generated using a three step process. First, the asset type is selected 

using a discrete uniform distribution with endpoints of one and the number of asset 

types. Second, the service life is selected using a discrete uniform distribution with 

endpoints of one and the maximum service life for the asset type just selected. The 

process is repeated until the sequence’s service life is greater than or equal to the 

horizon. Then, if the service life of the last asset selected results in a sequence of 

assets providing service beyond the horizon, the service life is truncated so the total 

service provided by the sequence equals the horizon.
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3.2.2 T rad itiona l

The most commonly suggested replacement procedure assumes an infinite hori­

zon and identically repeating future assets [16]. Using data for the assets available 

currently, the DM selects the asset type and service life pair that has the highest 

annual equivalent value, and then this pair is repeated forever. For simplicity, this 

approach will be referred to as traditional. The assumptions of an infinite horizon 

and identically repeating future assets, while making the problem easy to solve, fre­

quently do not model reality well. Bean, Lohmann, and Smith [5] studied a slight 

modification of traditional replacement. Called sequential traditional replacement, 

the highest annual equivalent value asset type and service life pair is selected at 

each replacement epoch, using updated cost forecasts. Bean, Lohmann, and Smith 

found that when technology and inflation change, the performance of the sequential 

approach is better than the classical traditional approach, although not as good as 

more sophisticated decision procedures.

The TRAD sequence is found using the sequential traditional approach. The pro­

cedure begins by determining at time T  =  0 the asset type and service life pair with 

the highest expected annual equivalent value. Let N ) = E[NPV(J ,  T, N)\ =

E[NPV(J ,  0, AT)] x F (J ,T )  /  (1 + m )T be the NPV EV for asset type J ,  installed at 

time T, providing N  periods of service, and {A/P, m, N)  be the capital recovery fac­

tor. Then the expected annual equivalent value at time T  is calculated aa fi(JyT ,N )  

x (A /P , m, IV). Given the highest value asset type and service life pair, the process 

is repeated at time T  +  ^highest value pair- ^ny service life for which (T  +  IV) 

exceeds the horizon is not considered. The procedure terminates when T  equals the 

horizon.
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3.2.3 E x p ec ted  V alue

The EV sequence is that sequence of assets with the highest mean NPV. Deter­

ministic dynamic programming is used to find the EV sequence [42], The dynamic 

programming algorithm proceeds in a forward direction, with the stages being the 

time periods, and the states being the (J , T , N ) triplets. The optimal value function, 

E NPV*(T) ,  is the maximum possible NPV EV for any sequence providing service 

for the first T periods. The functional equation is given by

E N PV *(T)  = Max{ENPV*{T ')  + fi(J, T \ T -  T') :

T  — T* = 1 ,2 , . . . , N j ,  r  > 0 ,  J  =  1 ,2 , . . . ,  j}

where N j  is the maximum service life for asset J  and J  is the total number of asset 

types. The boundary condition is E N P V * (T  — 0) =  0.

3.2.4 C e rta in  M o n e ta ry  E quivalent

Deterministic dynamic programming is also used to find the CME sequence. The 

only difference between the EV and CME approaches lies in how the optimal value 

function is calculated. Let <r2(J ,T ,N )  =  Var[NPV(J,T ,N)]  = Var[NPV(J,0 ,N)]  

x F (J ,T )2 /  (1 +  m)2T be the NPV variance for asset type J ,  installed at time T,  

providing N  periods of service, f npv(w\p><r2) be the NPV density function, U(u>) be 

the DM’s utility function, and E U (J ,T ,N )  =  J U ( w )  / njw(u>|/i(J,T,N),<r2(J ,T ,N ))  

dw be the E U  for asset type J ,  installed at time T,  providing N  periods of service. 

For the computational experiments, the value of E U (J ,T ,N )  was calculated using 

numerical integration with the limits of integration set a t plus and minus ten standard 

deviations from the mean. The CME for asset type J ,  installed at time T,  providing 

N  periods of service is then C M E ( J , T, N )  = U~l (EU(J, T, N)).  The optimal value
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function, CM E*(T ), is the maximum possible CME for any sequence providing

service for the first T periods. The functional equation is given by

C M E m(T)  =  M ax{C M E '(T ' )  +  C M E(J ,  T \ T -  T )  :

T - r  = l , 2 , . . . , J V j ,  r > 0 , J =  1 , 2 , , J}

The boundary condition is CM E*(T  = 0) =  0.

In the case of assets being correlated, the method to calculate the variance is

modified in an attempt to capture the covariance. Suppose asset type J\, installed 

at time T\, for N\  periods of service is followed by asset type J 2, installed at time 

T2, for N2 periods, and that J2 is correlated with J\. The variance is then calculated 

as <r2(J2,T2, N 2) +  2pjtj 2<r(Ji,Tly Ni)a(J2, T2, N2)t with pjtj 3 being the correlation 

coefficient for J2 following J\. If the result is negative, the variance is set equal to 

zero and C M E (J 2,T2, N 2) = p{J2,T2, N2).

3.2.5 E xpected  U tility

The EU sequence is generated using a branch and prune procedure, or if nec­

essary, the cluster heuristic which is described in the next chapter. If the branch 

and prune procedure is unable to find a sequence before exceeding the allocated 

computer memory, the cluster heuristic is invoked to find a “good" utility sequence-. 

The branch and prune procedure is similar to the forward dynamic programming 

algorithms used to find the EV and CME sequences, except that instead of a single 

best partial sequence always being found at each stage, a MV-efficient set of partial 

sequences is found. A sequence is MV-efficient if no other sequence has a greater 

mean and equal variance, or a greater than or equal mean and a smaller variance.

The branch and prune procedure is a  multiple objective dynamic program. The 

objectives are to maximize the mean and minimize the variance of the NPV. To do
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so, the branch and prune finds all the MV-efficient sequences and then uses a utility 

function to select the sequence of highest EU. The set of MV-efficient sequences can 

equivalently be called the Pareto-optimal, non-dominated, or admissible set of paths. 

Because of the computationally intensive nature of finding all the Pareto-optimal 

paths, no study found in the literature identified all the Pareto-optimal paths, except 

for small problems (e.g., three stages with no more than three states at each stage) 

used for illustrative purposes. Instead a variety of other approaches have been used to 

solve multiple objective problems. One approach is to find the path with the highest 

probability of being shorter (longer) than all other paths [52], or the path with the 

highest probability of achieving a given target [21]. A second approach is to find the 

MINSUM or MINMAX path [11, 19]. The MINSUM path minimizes the weighted 

sum of the deviations from a target value for each objective, while the MINMAX 

path minimizes the weighted maximum deviation from any target value. Finally, a 

heuristic can be used to find a “good” subset of Pareto-optimal paths [2, 20]. Thus, 

this research is the first study to attempt to find all the Pareto-optimal paths for 

problems considered to be of realistic size.

Stochastic dominance rules from portfolio selection theory can be used to prove 

that a sequence is MV-efficient if no other sequence has a greater mean and equal 

variance, or a greater than or equal mean and a smaller variance. While the proofs 

below assume the random variables are normally distributed, the results can also be 

proved for random variables from a restricted class of two-parameter distributions 

[18, 28]. Following the approach of Park and Sharp [46], given two random variables 

X \  and X 2 with cumulative distribution functions F i(s) and f'a(x), j F \ ( x )  dominates 

F 2( x )  (or equivalently, X\  dominates X 2) if E[U(Xi)] > E[U(X2)] for every utility 

function in the class of utility functions and strict inequality holds for a least one
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function in the class. For a DM with a  nondecreasing, finite valued utility function, 

Fi(x) dominates F2(x) by first-order stochastic dominance (FSD) if and only if Fi(x) 

< F2(x) for all x  and strict inequality holds for some x. Adding the restriction that 

the DM is risk averse, Fi(x) dominates F2(x) by second-order stochastic dominance 

(SSD) if and only if F\(t)dt <  / f ^  F2(<)d< for all x and strict inequality holds 

for some x.

R esu lt 1 (E qual V ariance): For a DM with a nondecreasing, finite valued 

utility function comparing X \  ~  Norma,l(n\,cr2) and X 2 ~  Normal(n2,<T2), Ai will 

be preferred if /ti > p2.

P roo f: If n\ > fi2, then Z\  =  (x — /ii)/<r < Z 2 = {x — p2)/<r for all x. This 

implies Fi(x) < F2(x) for all x, and thus by FSD, X \  dominates X 2.

R esu lt 2 (S m aller V ariance): For a risk averse DM with a nondecreasing, finite 

valued utility function comparing ~  Normal(n i,<Ti) and X 2 ~  iVorma/(/i2,<72), 

Xi will be preferred if Hi > p2 and a\ < a2.

P roof: Since pi >  p2 and <rj < (t2, the cumulative distribution functions Fj(x) 

and F2(x) will intersect. Let the point of intersection be denoted as Xo. For x < 

x0, Zi =  (x — < Z2 =  (x — fi2)/<r2 which implies F x(x) <  F2(x), and thus

/!So(F2(f) — Fx(t))dt >  0. For x > x0, Zi > Z2 which implies Fi(x) > F2(x), and 

thus /**(F2(<) — Fi(t))dt < 0. To determine the sign of iTQO(F2(<) — Fi(f))eft for x > 

x0, note that since p i - p2 >  0, pj - p2 =  /  x ( /x(x) -  f 2(x))dx > 0. Using integration 

by parts with u = x and dv = (/i(x ) — / 2{x))dx, du =  dx, v =  f  f \{x)dx  - / / 2(x)dx 

=  1 - 1  =  0, so u v -  f v d u  =  0 - / [ / ( / i (x )  -  f 2(x))dx]du =  -/(F i(x ) -  F2(x))dx 

=  / ( F 2(x) -  Fx(x))dx. Thus, / (F 2(x) -  Ft (x))<te >  0. If / ( F 2(x) -  Fi(x))dx >  0, 

/fSo(F2(t) “  Fx(t))dt > 0, and /*+(F2(t) -  Fx(t))dt < 0, then it must be the case that 

I-oo(F*(t) ~  ® f°r x  an^ obviously strict inequality holds for all x <
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xq.  Thus by SSD, X \  dominates X?.

The branch and prune procedure proceeds in a forward direction, with the stages 

being the time periods. The states are the (J, X, N)  triplets. At any given stage there 

can be more than one node (partial sequence) that is MV-efficient. In order to be able 

to backtrack to find the EU sequence, each MV-efficient node is labeled. At each time 

X, a MV-efficient set of sequences is built using a two step process. In the first step, 

the service life N  is fixed and all the asset types available at T' = T —N  are compared. 

The purpose of this step is to eliminate assets which are MV-dominated by others 

for the given N.  Since assets can evolve over time, this process must be repeated 

for each X. The result is a MV-efficient set of assets installed at time X' providing 

N  periods of service. One MV-efficient set is formed for each possible N,  with the 

total number of sets equal to the smaller of X and the maximum N j  for any J . In 

the case when assets are correlated, the MV-efficient set is formed using the variance 

of the asset to be added plus the covariance component. For example, if J2 is the 

asset to be added and it follows J j, then the variance term is given by <t2(J2,T2, N 2) 

+  2/3jIjJ<r(y1, 7\ , N\)ct(J2,T2)N2), where pjxj2 is the correlation coefficient for J2 

following Ji. Negative values, unlike the case for the CME procedure, are maintained 

since the variance of an entire sequence should be nonnegative for logical DMs. If 

sequences with negative variances are possible based on the DM’s forecasts, then the 

DM should adjust the correlation coefficients or variances specified.

The second step is to add the MV-efficient set of assets for each possible N  to 

the MV-efficient set of sequences at time X', to form an MV-efficient set of sequences 

at time X. This process is illustrated in Figure 3.1. For a given N,  the normally 

distributed NPV of each MV-efficient asset is added to the normally distributed 

NPV of each MV-efficient sequence at time X', and the set of MV-efficient sequences
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Figure 3.1: Branch and Prune Procedure

a t time T  is updated. The updating involves adding the resulting sequence to the 

MV-efficient set, or adding the sequence and then pruning other previously MV- 

efficient sequences now MV-dominated, or simply pruning the sequence. For the 

computational tests, the second step started with the maximum possible N  and then 

moved towards N  — 1. The rationale was that sequences in which the last asset had 

a  short service life would tend to be dominated by sequences in which the last asset 

had a  longer service life, due to the first cost being spread over a  longer period of 

time. If that were the case, then many branches could be pruned without having to 

be added to  the MV-efficient set. Once the MV-efficient set for the final stage has 

been formed, the EU for each efficient sequence is found using numerical integration. 

The EU sequence is then found by backtracking from the node a t the final stage with 

the highest EU.
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For independent assets, the branch and prune is an optimal algorithm. However, 

for the case of Markov-correlation, the branch and prune is only a heuristic procedure. 

For this case, the branch and prune’s performance was evaluated against an upper 

bound as part of the computational experiments. The upper bounding procedures 

are described in the next chapter. The branch and prune is not an optimal algorithm 

because the optimal path can be pruned if it is not MV-efficient at each replacement 

epoch. Consider the following example with a horizon of two periods. At time zero, 

two asset types, 1 and 1', are available, both with identical one period service lives. 

At time one, asset type 2 for one period of service only is available. Let /ij =

=  64, o\i =  81, o\ = 100, pm =  0.5, and p \>2 =  0.1. Comparing the sequence of asset 

type 1 followed by asset type 2, [(1,0,1),(2,1,1)], with [(1*,0,1),(2,1,1)] the means are 

identical and thus can be ignored. For [(1,0,1),(2,1,1)], the sequence variance is 64 + 

100 -I- 2(0.5)(8)(10) =  244. For [(1’,0,1),(2,1,1)], the sequence variance is 81 +  100 

+  2(0.1)(9)(10) =  199. Thus, the optimal sequence is [(1’,0,1),(2,1,1)]. However, the 

branch and prune procedure would select [(1,0,1),(2,1,1)] because at time 1, (/ii,<rj) 

MV-dominates (/ii',<r?#).

For the computational tests, only problems with finite horizons were considered. 

For the infinite horizon case, a stopping rule to find an equivalent finite horizon is not 

clear for the EU maximizer. If replacement were to occur in a given period, and if as­

sets were assumed to be independent, then one of the MV-efficient partial sequences 

would match the optimal sequence through the given period. However, the match­

ing partial sequence could not be identified a priori. If assets were assumed to be 

correlated, then there is no guarantee that any of the MV-efficient partial sequences 

would match the optimal sequence through the given period. Thus, in general it is 

impossible to identify an equivalent finite horizon. It may be possible to identify
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an equivalent finite horizon in several special cases when assets are assumed to be 

independent, such as if there is only a single MV-efficient node at each stage under 

consideration, or if all the MV-efficient nodes at each stage are part of sequences 

that begin with the same asset type.

3.3 Performance Measures

It is difficult to develop a good performance measure to compare the sequences

identified using the alternative decision procedures. Because the EU of a sequence can

be positive, zero, or negative, a simple fraction such as EU  (sequence being compared)

/  £U(EU sequence) can be difficult to interpret and may be undefined. The difficulty

of interpretation results because such a fraction does not have the conventional range

of zero to one, but rather negative infinity to positive infinity. In related research, to

avoid a similar difficulty, Bean, Lohmann, and Smith [5] used a random sequence as a

benchmark level of performance by which other decision procedures were compared.

For the MV model, using a random sequence as a benchmark results in a performance

measure of the form

■^(/(sequence being compared) — EU(random)
EU (EU sequence) — £ (/(random)

By setting (3.1) to zero should the random sequence outperform the sequence being

compared, (3.1) will range from zero to one.

However, (3.1) may be unstable if based on a single random sequence. If the

EU for random sequences were to vary considerably, interpretation of (3.1) may

be difficult (i.e., the performance measure would tend to be quite noisy). Three

alternative modifications to (3.1) were studied empirically. The first alternative was

to use the sequence with highest EU out of a set of random sequences, the second was

to use the average EU of the set, and the last was to use the first random sequence
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Table 3.1: Random Sequence Performance Measure Variance

Problem
S et

N  um ber of 
O bservations

B eet o f  100 
Variance

A vg. o f  100 
Variance

First o f 100 
Variance

B est o f 100 
A vg. R atio

1+ 11 0.1235 31.3520 393.2683 0.7920
I- 19 0.0009 989.9619 86.9267 1.2691
2+ 4 0.0519 0.1069 0.2609 0.7972
2- 26 0.0350 1.2158 0.4409 1.1200
3+ 9 0.6773 0.9063 0.5870 0.6888
3- 21 0.0142 43.9928 14.9985 1.1543
4+ 15 0.0026 2.5605 2.5805 0.9501
4- 15 0.0284 1.5660 3.3647 1.1424

generated. The ratio EU  (random) /  EU(EU sequence) was computed for each of four 

sets of 30 problems. The variance of this ratio was then used as a measure of stability. 

The lower was the variance, the higher was the stability. The first problem set had 

independent assets with “low” uncertainty, the second problem set had independent 

assets with “high” uncertainty, and the last two problem sets had low uncertainty 

with negative and positive correlation, respectively. Random sequence sets of size 10, 

100, and 1000 were considered. While the results for a size of 100 were clearly better 

than for a size of 10, sets of size 100 and 1000 did not produce statistically different 

results. The results for a size of 100 are shown in Table 3.1. The four problem sets 

were divided into two categories based on the sign of the EU sequence's mean NPV. 

For the positive EU case, the measure was always less than or equal to one, and 

for the negative EU case it was always greater than or equal to one. This was done 

to avoid some of the problems of interpretation discussed above. The positive and 

negative categories are identified in the “Problem Set" column in Table 3.1 by the 

“+ ” and symbols. Note from the “Number of Observations” column that more 

of the problems generated were of the negative EU case than the positive EU case. 

A comparison of the variance for the three alternatives shows the best of 100 random 

sequences to have the lowest variance, except for the case, “3+ .”
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Because it appeared to be the most stable, the best random sequence out of 100 

was the alternative used for the computational experiments. The resulting “utility 

performance” measure was the following.

EU (sequence being compared) — E U (best of 100 random)
EC/(EU sequence) — EU(hest of 100 random)

The value of (3.2) was set to zero if the random sequence had an equal or higher

EU value than the sequence being compared. In order to evaluate the quality of

the EU decision procedure for the cases when it was not guaranteed to be optimal

(i.e., when assets were correlated or the cluster heuristic had to be used), the “EU

to upper bound utility performance" measure was developed:

EU( EU sequence) — EU (best of 100 random) .
£{/(upper bound) — EC/(best of 100 random)

The value of (3.3) was set to zero if the random sequence had an equal or higher EU

value than the EU sequence.

Table 3.2 shows the values of (3.2) for three problems taken from the compu­

tational experiments. For each problem, the sequence type, mean, variance, EU, 

and utility performance are displayed. For the first problem, despite the EV and 

EU sequences being very close in mean, variance, and EU, the performance for the 

EV sequence was 0.0. This value resulted because the best of 100 random had an 

EU value greater than 97.2172. For the second problem, both the EV and CME 

sequences had positive performance values. A comparison of the EV sequences for 

the first two problems shows that the performance value was lower for the first prob­

lem (0.0 vs. 0.1801) despite a smaller absolute EU difference (0.0078 vs. 0.5661)

as compared to the matching EU sequence. A comparison of the EV sequence for 

the first problem and the CME sequence of the second problem shows that a similar 

absolute EU difference (0.0078 vs. 0.0216) resulted in a much lower performance
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Table 3.2: Sample Utility Performance Values

Problem Sequence Mean Variance EU
Utility

Performance
1 EV 213.3180 1564.4730 97.2172 0.0000

EU 213.3053 1550.9050 97.2250
2 EV 73.4461 810.9745 39.4817 0.1801

CME 73.1684 577.2316 40.0262 0.9686
EU 73.1353 565.2512 40.0478

3 EV -65.8346 73.3013 -227.7407 0.9505
EU -65.8932 63.6304 •226.9904

value (0.0 vs. 0.9686) for the EV sequence. For the third problem, the EV se­

quence’s performance was about the same as the CME sequence’s performance in 

the second problem (0.9505 vs. 0.9686), but the absolute EU difference was about 

35 times larger. As these three examples illustrate, the performance measure was 

rather insensitive to the absolute EU difference.

The best random sequence out of 100 might be interpreted as representing an 

intelligent DM who uses experience and judgement in making replacement decisions, 

but no sophisticated techniques. As the last column of Table 3.1 shows, the average 

ratio for the best sequence out of 100 ranged from 1.1200 to 1.2691 when the EU 

for the EU sequence was positive, and from 0.6888 to 0.9501 when negative. Thus, 

had the DM selected the best of 100 random sequences, the resulting EU would have 

been, on average, 69% to 95% of the maximum EU possible.
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CHAPTER IV

COMPUTATIONAL EXPERIM ENTS

A series of computational experiments were conducted to gain insight about re­

placement decision making under uncertainty and to compare the alternative decision 

procedures. A test problem generator with a set of parameters was used to randomly 

generate problems so that a wide range of potential problems could be considered. 

In total, five experiments were performed. The first experiment indicated that the 

branch and prune procedure could solve optimally many problems when assets were 

assumed to be independent. However, for some problems the allocated computer 

memory was exceeded. In the second experiment, the cluster heuristic developed to 

overcome the memory problem and the heuristic’s associated upper bounding pro­

cedure were evaluated. The results showed both to perform well. Some key model 

parameters were then studied in the third experiment in an attempt to determine 

some of the conditions that influence the performance of the alternative decision pro­

cedures. The fourth experiment considered three different types of utility functions 

and found that the corresponding sequences of highest EU were similar when the risk 

aversion levels were similar. Finally, the fifth experiment examined the sensitivity 

of the EU sequence to changes in the NPV forecasts. The results indicated that 

changes in the mean have a much greater effect than similar changes in the variance.

32
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The remainder of the chapter is divided into three sections. First, the test problem 

generator used for the experiments is described. Next, the design and numerical 

results for each of the five experiments are discussed. The chapter concludes with a 

summary of the parameter effects.

4.1 The Test Problem  Generator

Different approaches were considered in attempting to meet the research ob­

jectives of gaining insight into replacement decision making under uncertainty and 

comparing the performance of the alternative decision procedures. First considered 

was use the of problems from the literature. However, no applicable problem sets 

could be found. Most replacement research has considered only deterministic cash 

flows and the work done with stochastic cash flows assumed the DM desired to max­

imize GV. A second approach considered was to collect real data. The difficulty of 

this approach lies in the amount of time required to collect data for enough problems 

to be able to draw some general conclusions. A third approach, and the one used 

here, was to randomly generate a wide range of problems that are believed to be 

representative of typical replacement problems.

In developing the test problem generator, the key question was how to assign 

values to the model parameters. Some parameters can be set by drawing a value 

directly from a distribution, while others require more extensive calculations. The 

first subsection below lists the all the parameters required as input by the sequence 

generator, and specifies the ranges for those parameters that can be set simply by 

drawing a value. Then, the four subsequent subsections discuss how the remaining 

parameters were set. These parameters include the level of risk aversion, correlation 

coefficients, level of uncertainty, and NPVs.
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4.1.1 Test P rob lem  G enera to r P aram eters

The MV model requires as input the discount rate, level of risk aversion, horizon, 

number of asset types, maximum service life for each asset type, NPV means and 

variances for all asset type and service life combinations, rate of technological change 

for all asset types, and correlation coefficients. The parameters which can be set 

by drawing a value directly from a distribution include the discount rate, horizon, 

number of asset types, maximum asset service life, rate of technological improvement, 

and asset monetary difference.

For the computational experiments, the after tax discount ra te  ranged from 

15% to 30%. Real firms may use a discount rate that exceeds 30%. However, only 

problems with lower discount rates were considered since the higher rates reduce 

significantly the impact of future decisions on the current decision. With very high 

rates, it becomes almost irrelevant what assets are installed beyond the first asset, 

thus reducing the need for a sophisticated procedure.

The horizon ranged from 10 to 50 periods. While real problems could have 

horizons less than ten periods, such problems will typically be easy to solve and 

provide less insight.

The num ber of asset types ranged from 2 to 7. Two is the minimum (unless 

the DM’s objective is only the optimal length of service), while seven was consid­

ered a reasonable maximum. For real decisions, some alternatives may prove to be 

technologically infeasible, others often can be eliminated without detailed analysis. 

Additionally, the time and effort required to collect the necessary information for a 

large number may be overwhelming.

The m axim um  asset service life ranged from 2 to 14 periods. Perhaps more 

important than the range is the relationship between the asset service life and the
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horizon. W ith short horizons the service life could actually exceed the horizon, while 

for longer horizons a number of replacements could be necessary.

For the computational experiments, assets available in the future are assumed to 

be related monetarily to assets currently available in a deterministic manner. The 

NPV for future versions of asset type J ,  installed at time T , providing N  periods of 

service is given by

where F (J ,T )  is the deterministic ra te  o f  technolog ical im provem en t and m is 

the discount rate. By relating future assets to assets currently available in a  deter­

ministic manner, the set of assets available at each time period can be generated 

easily. However, the decision procedures are set up to accept forecasts for any fi­

nite number of assets available at each point in time if the DM desires to provide 

such detail. For the computational experiments, the DM was assumed to be able 

to provide a  deterministic discount rate that represents the minimum rate of return 

expected for future but as yet unknown productive opportunities. The discount rate 

is also commonly called a growth rate, the cost of capital, or the minimum attractive 

rate of return. If all future productive opportunities were known completely, there 

would be no need for a discount rate [41]. However, in the more realistic situation 

of incomplete information, the DM will know typically only the proposals available 

currently, but not precisely what future opportunities will become available. For 

purposes of this research, the discount rate represents the minimum rate of return 

expected from these future but as yet unknown productive opportunities. A com­

mon approach to determine its value is to examine historical records and determine 

the lowest average rate of return generated by productive investments for similar re­

placements. Oakford, Salazar, and Diguilio [43] provide a more detailed description
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of factors to consider in determining a reasonable value for the discount rate.

The rate of technological improvement ranged from 0% to 30% per period. Thus, 

the F (J ,T ) ’s are assumed to be geometric functions of the form (1 +  r)T, where r 

is the rate of technological improvement. Ganesh [15], after examining a number 

of previous studies and data from industry, concluded that the geometric is “a rea­

sonable representation of productivity improvement.” W ith a rate of up to 30%, 

technology may be increasing either faster or slower than the discount rate, allowing 

a wide range of problems to be considered.

The asse t m o n e ta ry  difference ranged from 0% to 30%. This parameter is 

used to limit how monetarily different the asset types are. If problems are randomly 

generated with large monetary differences among the alternative asset types, then 

these problems will typically be easy to solve, may not require a sophisticated deci­

sion procedure, and will provide less insight. The asset monetary difference is used 

when computing the NPVs and the rate of technological improvement. For each 

problem a base set of NPVs is computed. The base set is then perturbed, using the 

asset monetary difference value, to generate the NPVs for the individual asset types. 

Additionally, a base rate of technological improvement is perturbed to generate the 

rate of technological improvement for the individual asset types. The methods used 

to generate the NPVs are explained in more detail below. An upper limit of 30% 

was selected because problems with differences any greater will typically be easy to 

solve.

For most of the experiments, the ranges for the parameters were split into sub­

ranges, and the combined sub-ranges might fail to span the entire range listed above. 

All such deviations are noted. It turns out that the ranges selected for some of the 

parameters is not of great importance, as the results and observations from the five
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experiments will illustrate.

4.1.2 S e ttin g  th e  Level of R isk A version

Before the DM’s level of risk aversion can be set appropriately, an estimate of the 

monetary range that the utility function must span is needed. The NPV distribution 

for the EV sequence can be used to provide this estimate. The EV sequence always 

corresponds to the MV-efficient sequence with the highest mean and variance found 

by the EU decision procedure. Since the NPV for each asset in the EV sequence 

is assumed to be normally distributed, the EV sequence’s NPV distribution is also 

normal. An estimate for the relevant range can be made by truncating the EV 

sequence’s NPV distribution 3.5 standard deviations above and below the mean. 

The upper endpoint will, with probability 0.9999, never be exceeded since it is based 

on the maximum mean and maximum variance. However, the lower estimate may 

be too high. A more accurate and elaborate method to estimate the lower endpoint 

would be to find the minimum NPV lower endpoint of all the MV-efficient sequences 

that the EU decision procedure found.

Given the relevant range the utility function must span, in practice the DM could 

assess subjectively an appropriate utility function. For example, the lower endpoint 

could be assigned a utility of zero, the upper endpoint a utility of one, and then the 

points in between assessed via lotteries. While such an approach could be used in 

practice, the test problems were designed in a manner considered to be representative 

of a wide range of DMs. Except for the fourth experiment, it was assumed that the 

DM’s utility function was an exponential of the form U(w) =  (1 — e"mCW)fci where c 

denotes the level of risk aversion. By definition, r(w) =  —UM(w)/U'(w) is the risk 

aversion function [49]. The exponential form was selected for two reasons. First, it
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has constant risk aversion and thus the initial wealth of the DM does not need to be 

known. Second, the more general exponential function of the form U(w) = a — be~cw 

reduces to the above form if the approach of Thompson and Thuesen [55] is followed 

by setting U(0) = 0 and U'(0+) =  U \ 0") =  1. This eliminates the need to set 

more than one parameter. Kallberg and Ziemba [26] provide results for portfolio 

selection problems which indicate that utility functions of differing functional forms 

and parameter values yield similar optimal portfolios if they have similar absolute 

risk aversion (at least for short horizons).

The approach used to set c for the experiments was based on the EV sequence’s 

NPV. The endpoints for the range of monetary consequences were set by truncating 

this NPV distribution 3.5 standard deviations above and below the mean. The 

endpoint of largest absolute value (M A X A B ) was used to set c = ln (z) /M AXAB  

where z ranged from 1.5 to 20. The more risk averse the DM, the greater the 

value for z. Unless the EV sequence’s mean NPV was zero, the utility function was 

assessed over a range wider than the relevant range. The range for z was based on 

data collected from students assessing their personal utility. Using lotteries, fifteen 

students assessed their utility function over a range from $0 to $100. Each student’s 

utility function was then fit to an exponential utility function of the form U(w) 

=  1 — e-ct". Regression was used to determine the value of c giving the best fit. 

The resulting c values were were consistent with both examples in Thompson and 

Thuesen [55] and results in Kallberg and Ziemba [26]. The range for z (=  ecMAXAB) 

was determined by setting M A X A B  =  100 and using the minimum and maximum 

values found for c.
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4.1.3 Setting the Correlation Coefficients

The MV model assumes assets in a sequence to be either independent or Markov- 

correlated. Thus, the test problem generator generates correlation coefficients for 

assets that are adjacent in a sequence. Two different schemes were considered to 

set the correlation coefficients. Both assumed that assets of the same type had the 

highest correlation coefficient and that the correlation coefficient was identical for 

all the possible associated service lives. The first assumption was made since it 

seemed unlikely that two different asset types would be more positively correlated 

than two assets of the same type. The second assumption was made to reduce the 

amount of input data required and because there was little to gain from the additional 

complexity. However, the MV model is set up to accept a specific value for each asset 

type and service life pair if the DM desires to provide such detail.

The first scheme was quite simple. For the positive correlation case, the coefficient 

for sequential assets of the same type was set equal to 0.17, where 7  is the number 

of asset types. For sequential assets of different types, the coefficient was set equal 

to 0.17 — (0.1 x d u (l,7  — 1)), where 7 u (l,7  — 1) is a realization from a discrete 

uniform distribution with endpoints of 1 and 7  — 1. For the negative correlation 

case, the coefficient for assets of the same type was set to 0.0. For sequential assets 

of different types, the coefficient was set equal to —(0.1 xrfu(l, 7  — 1)). A sample set 

of coefficients for three asset types is shown in Table 4.1 where asset type 7t follows 

type J\.

There was, however, a problem with this scheme. It was possible to have se­

quences with covariance terms that sum to a value more negative than the sum of 

all the positive variance terms. To avoid such illogical negative variances, a more 

sophisticated scheme was used to set the correlation coefficients for the computa-
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Table 4.1: Correlation Coefficient Matrix for Three Asset Types

Positive

Ji
h

1 2 3
1 0.3 0.2 0.1
2 0.1 0.3 0.2
3 0.2 0.1 0.3

Negative

Ji
h

1 2 3
1 0.0 -0.1 -0.2
2 -0.2 0.0 -0.1
3 -0.1 -0.2 0.0

tional experiments. Let u(a, b) represent a random draw from a uniform distribution 

with endpoints a and b. Then for the positive correlation case, the coefficient for 

sequential assets of the same type was set equal to u(0,1). The remaining values 

for the coefficients for the current asset type followed by an asset of a different type 

were set by multiplying u(0, 1) times the coefficient just set for sequential assets of 

the same type. For the negative correlation case, the coefficient for sequential assets 

of the same type was set equal to zero. The remaining values for the coefficients for 

the current asset type followed by an asset of a different type were then set equal to 

u(0,0.5), with the sign based on the following observation for any partial sequence of 

three assets. If the first two assets are positively correlated, and the second and third 

axe also positively correlated, then to be consistent the coefficient for a sequence with 

the first asset followed by the third asset should also be positive. Table 4.2 shows 

all the possible patterns for any partial sequence of three assets. The first column in 

Table 4.2 is the sign of the correlation coefficient for the first and second asset in the 

sequence, the second column the sign for the second and third, and the last column 

for the first and third. Note that for more than two asset types, all the coefficients
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Table 4.2: Correlation Coefficient Sign for Negative Case

1st and 2nd 2nd and 3rd 1st and 3rd
+ + +
+ - -
- + -
- - +

cannot be negative, meaning the negative case will typically be a mixture of positive 

and negative values. Even with all combinations of three assets being consistent in 

sign, to assure no sequences would have negative variances, the maximum absolute 

coefficient value was limited to 0.5.

4.1.4 M easure of Uncertainty

Previous capital budgeting work that has examined risk has found that until the 

level of uncertainty is “high” enough, there is little or no difference in the selections 

made by risk and non-risk adjusted procedures [1]. Thus, an important character­

ization of any problem is the level of uncertainty. Since the MV model requires as 

input the NPV distribution for each asset type and service life pair, the level of un­

certainty should be characterized based on these inputs. In their capital budgeting 

work, Thompson and Thuesen [55] characterized the amount of uncertainty in terms 

of the variance of the initial capital investment. Since replacement problems typically 

have a  first cost, uncertainty could be based on the first cost variance. However, such 

an approach can result in widely varying values for the NPV coefficient of variation. 

For example, suppose the first cost is 1.0, the variance is set to three times the first 

cost, the revenues for the first two periods equal 0 .6, the horizon is two periods, the 

asset has no salvage value, and the discount rate is zero. The resulting NPV mean 

equals 0.2 and the variance equals 3.0. The coefficient of variation is 8.66. Now for
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the same example, assuming the horizon is four periods and the revenues are 0.6 in 

each of these periods, the resulting NPV mean equals 1.4 and the variance again 

equals 3.0. The resulting coefficient of variation is 1.24.

For the experiments, a slightly different approach was used. Uncertainty was 

characterized by the median NPV coefficient of variation across all asset types and 

service lives. This value was estimated for the test problem generator using a  sample 

set of problems. Both the first cost and the annual costs were allowed to be uncertain, 

since a DM will typically also have uncertainty about the costs in future periods. 

A model that limits uncertainty to only the first cost is unnecessarily restrictive. 

For both cost parameters, the standard deviations were assumed to be uniformly 

distributed between uncerta and uncertb times the realization for the cost parameter 

mean. For the first two experiments, uncertainty was studied at only a low level 

and thus a single (uncerta, uncertb) pair of values was used. For the last three, 

uncertainty was studied at both a low and a high level, requiring two (uncerta, 

uncertb) pairs of values. Low uncertainty was meant to represent the point at which 

uncertainty was just large enough to start causing a few EV sequences to differ from 

the associated EU sequences, while high uncertainty was meant to represent a point 

at which the EV and EU sequences frequently differed. The values used for uncerta 

and uncertb are listed for each experiment. Since the NPV coefficient of variation has 

a lower bound of zero, the distribution will tend to be positively skewed. Therefore, 

the median rather than the average ratio was used.

The NPV coefficient of variation represents the overall, or absolute level, of uncer­

tainty. Another important concept is that of relative uncertainty. This refers to the 

amount of difference in the variance across asset types and service lives. Even when 

the overall level of uncertainty is high, if there is very little relative uncertainty, then
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the EV and EU sequences will tend to match. There has to be sufficient reduction 

in the variance before a sequence with a  lower mean will be selected, even for highly 

risk averse DMs.

4.1.5 G enerating the N P V s

Two methods, the “regular” method and the “annual equivalent” (AE) method, 

were used to generate the NPVs. The regular method was used for all but the fourth 

experiment, which, due to special requirements, necessitated using the AE approach. 

For both methods, once the number of asset types, maximum service life for each 

asset type, rate of technological improvement for the first asset type, and horizon 

were randomly drawn, a base set of NPVs was generated. The base set was then 

perturbed to generate the NPVs for all the other asset types. Since the MV model 

assumes the NPVs are normally distributed, only mean and variance terms had to 

be generated.

For the regular method, the NPVs were calculated based on three cash flow 

components: the first cost, the annual operating cost (or revenue if this cost was 

negative), and the salvage value. The mean first cost was used as the basis for 

generating all the other cash flows. The asset’s mean first cost was assumed to be 

uniformly distributed between 1 and 100, which allowed a range of problems to be 

generated. Once a value for the mean first cost was drawn, the standard deviation of 

the first cost was assumed to be uniformly distributed between uncerta and uncerta 

times this realization. The mean annual cost for the first period was assumed to be 

uniformly distributed between -0.75 and 0.75 times the mean first cost realization. 

This allowed problems to be generated in which annual costs exceed revenues (or 

revenues are not considered) as well as the reverse case. The standard deviation
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of the first period’s annual cost was assumed to be uniformly distributed between 

uncerta and uncertb times the first period’s mean annual cost realization. Annual 

costs for future periods were assumed to change geometrically based on the first 

period (i.e., A C (T ) =  (1 +  g)T~x x A C(T  =  1) where AC  is the annual cost, T  the 

time period, and g the rate of geometric change). To allow for both increasing and 

decreasing cost patterns, g was assumed to be uniformly distributed between -0.5 

and 0.5. The salvage value was assumed to decline geometrically with g uniformly 

distributed between -1.0 and 0.0 (i.e., SV (T )  — (1 +  g)T x F C  where S V  is the 

salvage value and F C  the first cost). Given the first cost, annual costs, and salvage 

value, the NPV means and variances for the base set were then computed for each 

possible service life up to the maximum of any asset type.

For the AE method, the base asset NPVs were computed using a randomly se­

lected value for the mean AE. The mean AE was assumed to be uniformly distributed 

between 100 and 10,000. Once a value, ae, for the mean AE was drawn, the base 

mean NPV for each possible asset type and service life combination was set equal to 

ae x tt(0.75,1.25) x (P /A ,m, N),  where (P / A , m , N ) is the present value factor for 

N  periods of service and discount rate m, calculated as shown in (4.1). The value 

u(0.75,1.25) was used to generate some economic difference among the different ser­

vice lives for the same asset type. The standard deviation of the AE was assumed to 

be uniformly distributed between uncerta and uncertb times the mean AE realiza­

tion. Given a realization, aestd, for the standard deviation of the AE, the variance of 

the base NPV for each possible asset type and service life combination was set equal 

to (ae , l(*)2 x u(0.75,1.25) x (Pv/ A , m , N ), where (Pv/ A , m , N ) is the present value 

variance factor for N  periods of service and discount rate m, calculated as shown in 

(4.2). Note that (Pv/ A , m , N ) is not just (P / A , m , N )3. Ignoring the u(0.75,1.25)
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factor, use of (P /A ,m , N )2 for the variance will cause a bias towards shorter service 

lives. The bias occurs because such a formula results in a variance higher than it 

should for longer service lives (e.g., for the same asset type, replacing every year will 

have a lower variance than replacing every three years). A bias will also occur if the 

technological improvement factor, F ( J ,T ), for each asset type J  is not part of the 

formulas. The correct expressions are:

( 4 l )

W / A , m ,  A -) =  £ f H ^  ( 4 .2 )

The NPVs and rate of technological improvement for the first asset type were set 

equal to the base set. The NPVs for the other asset types were then computed by 

randomly perturbing the base NPVs. The monetary difference between the assets 

was assumed to be distributed between 0.00 and 0.05 (low case) or 0.10 and 0.30 (high 

case), with the case (low/high) randomly selected except for the two experiments. 

For each asset type and service life pair, two realizations of the monetary difference 

(one for for the mean and one for the variance) were drawn. The sign for each 

(positive or negative) was also randomly selected. The NPVs were then computed 

by multiplying the base NPVs by one plus these realizations. Given the NPVs, the 

final step was to set the rate of technological improvement for the other asset types. 

For each asset type, a realization of the monetary difference was drawn. The rate of 

technological improvement was then set by multiplying the rate for the base asset 

by one plus this realization.

Several extensions could be made in generating the NPVs. First, the regular 

method could be extended to allow for more than three’cash flow components and 

the rate of technological improvement could be specified by cash flow component.
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For example, first costs could rise by six percent per period. Annual operating 

costs could be broken into machine maintenance costs and raw material costs, with 

machine maintenance costs rising nine percent per period and raw material costs 

rising by two percent per period. A second extension would be to include changeover 

effects. Changeover effects would arise if the cost of installing and operating an 

asset was dependent on the immediately preceding asset type in the sequence. To 

model changeover effects, the DM could specify the cash flows dependent on the 

immediately preceding asset type.

4.2 The Experiments

Five experiments were performed. The numbering of the experiments corresponds 

to the order in which they were performed. The objectives of the experiments were:

•  To gain insight about replacement decision making under uncertainty.

• To compare the performance of the alternative decision procedures.

The first two experiments evaluated the ability of the branch and prune procedure 

and cluster heuristic to solve a wide range of problems when assets were assumed 

to be independent. The results indicated that these two procedures could find ei­

ther optimal or nearly optimal sequences. Thus, the last three experiments focused 

on identifying some of the factors that influence the performance of the alterna­

tive decision procedures, including the impact of correlated assets. The subsections 

below describe the purpose, conclusions, design, and results including a number of 

observations for each of the five experiments.
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4.2.1 Experiment One

The purpose of the first experiment (EXl) was to determine if the branch and 

prune procedure could solve optimally a wide range of problems when assets were 

assumed to be independent. The main conclusions of EXl were:

• The branch and prune procedure solved optimally many, but not all, of the 

independent asset problems. Problems with long horizons, a large number of 

asset types, and long service lives occasionally caused the procedure to exceed 

the available computer memory.

• The MV-efficient nodes were found to cluster.

E X l Experimental Design and Results

EXl was a 2 x 2 x 2 x 2  factorial design with five replications. The performance 

measure used was the maximum number of MV-efficient nodes that occurred in any 

stage. The number of nodes was selected as the performance measure because EXl 

focused on finding optimal sequences and not on comparing the alternative decision 

procedures. The four factors were the number of asset types, maximum asset service 

life, asset monetary difference, and horizon. The distributions used for the low and 

high cases for each factor are shown in Table 4.3, where DU is used to denote a 

discrete uniform distribution and U a continuous uniform distribution. Uncertainty 

was limited to one level, with uncerta =  0.1 and uncertb = 0.5. Based on a sample of 

ten problems (244 mean and variance pairs), the median NPV coefficient of variation 

was 0.4076, with an average of 0.5906, minimum of 0.0950, maximum of 10.0002, and 

variance of 0.9140.

EXl was run using discount rates of 15% and 30%. The data collected from the
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Table 4.3: EXl Parameter Ranges

Param eter Low High
Assets DU(2,3) DU(4,5)
Service life DU(2,5) DU(6,9)
Difference U(0.0,0.05) U(0.1,0.3)
Horizon DU( 10,20) DU(20,30)

five replications are shown in Table 4.4. The header for each of the sixteen cells 

indicates the level of the four factors in the order listed above, with L being the 

low case and H the high case. The m=15% results are shown first, with the m=30% 

results following. A review of Table 4.4 shows a wide range in the required maximum 

number of MV-efficient nodes, even within the same cell.

An analysis of variance for the m=15% case is shown in Table 4.5. For the “Source 

of Variation” column, the factors are coded as follows: A is the number of assets, S 

the service life, D the asset difference, and H the horizon. To be significant, Fq must 

be at least F(a  — 0.10, vx =  1, i/2 =  64) «  2.79. The results show the service life and 

horizon factors are significant.

E X l Observations

EXl yielded several insights. First, despite the fact that the asset monetary dif­

ference (factor D in Table 4.5) was not significant, the hardest problems to solve 

optimally were those for which several assets were almost identical. This result is 

neither surprising nor of great concern because if two assets are very similar economi­

cally then it matters less which is selected. While the NPVs can differ slightly, the key 

was that future versions of the assets change almost identically (e.g., a technological 

rate of increase of 0.0475 for asset type one and 0.0480 for asset type two).

Second, the analysis of variance shown in Table 4.5 indicated that both the hori-
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Table 4.4: Maximum Number of MV-Efficient Nodes Required

rr>_= 1526-
LLLL LHLL HLLL HHLL LLLH LHLH HLLH HHLH

68 23 16 3 33 51 3 13
4 6 9 12 2 90 n o 68
3 14 6 6 1976 3 1277 151

51 113 11 5 4 39 744 9
22 3 9 9 2 130 15 82

LLHL LHHL HLHL HHHL LLHH LHHH HLHH HHHH
5 7 7 84 964 9 81 9
7 34 11 17 57 110 99 20
6 49 21 10 19 65 144 140
9 13 224 9 2 11 13 21
3 311 1202 47 34 24 867 6

m == 309*
LLLL LHLL HLLL HHLL LLLH LHLH HLLH HHLH

55 17 20 3 33 26 2 11
2 8 16 10 208 24 3 7
2 9 5 5 ++ 3 ++ 287

50 81 11 7 5 27 ++ 9
27 4 10 3 2 179 15 118

LLHL LHHL HLHL HHHL LLHH LHHH HLHH HHHH
9 7 8 76 1208 10 521 11
7 44 11 22 26 173 247 50
4 95 36 18 19 323 884 89
6 12 676 12 2 14 15 49
3 346 ++ 23 136 27 ++ 14

Note: + -f indicates the m=309* case required more nodes th&n the corresponding m = cu e
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Table 4.5: EXl Analysis of Variance for m=15%

Source Sum of Degrees Mean
of Variance Squares of Freedom Square F0

A 18422.5 1 18422.5 0.17
S 498332.5 1 498332.5 4.72*
D 2247.2 1 2247.2 0.02
H 316009.8 1 316009.8 2.99*

AS 49104.1 1 49104.1 0.46
AD 23529.8 1 23529.8 0.22
AH 6480.0 1 6480.0 0.06
SD 7144.2 1 7144.2 0.07
SH 250432.2 1 250432.2 2.37
DH 179551.3 1 179551.3 1.70

ASD 35448.2 1 35448.2 0.34
ASH 25776.2 1 25776.2 0.24
ADH 26136.5 1 26136.5 0.25
SDH 82818.5 1 82818.5 0.78

ASDH 33048.5 1 33048.5 0.31
Error 6758670 64 105604.2

TOTAL 8313151 79

zon and service life were significant. Longer horizons made optimal sequences more 

difficult to obtain. Results for horizons longer then 30 periods showed that the num­

ber of MV-efficient nodes required could exceed the allocated computer memory. 

Shorter service lives also made optimal sequences more difficult to obtain. One ex­

planation is that longer service lives will in general have greater annual equivalent 

value and, thus, tend to dominate shorter service lives. For example, buying a car 

and then selling it after just one or two years will typically result in higher annual 

costs than keeping it for six or seven years. Without any longer, dominating service 

lives, the branch and prune procedure cannot eliminate all the shorter combinations. 

While shorter service lives created more nodes on the MV-efficient list, it was the 

longer service lives that greatly increased the required CPU times. The correlation 

between the maximum MV list size and CPU times, while positive, is not one.
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Third, higher discount rates resulted in problems that were on average more 

difficult to solve. Comparing the m=15% and m=30% cases in Table 4.4 shows that 

42 problems were more difficult with the higher discount rate, 13 were the same, and 

25 were easier. Table 4.4 also shows that the most difficult problems to solve were 

even more difficult with the higher discount rate (e.g., cells HLLH or HLHH). A 

higher discount rate tends to significantly diminish any differences among the assets. 

With no assets dominating, the nodes expand more rapidly. Exceeding the allocated 

computer memory was only a  problem for EXl beyond about 25 periods and at that 

point the additional value of a given asset was small. FYom a practical point of view, 

while it probably makes little difference which assets are selected a t such later time 

periods, it does make finding the EU sequence more difficult.

Finally, the MV-efficient nodes were found to cluster, with the breaks in the 

variance. Plots of the MV-efficient list for two problems from EXl are shown in 

Figure 4.1 and Figure 4.2. The clustering pattern was noted for both problems with 

medium sized (e.g., 250) MV-efficient lists as well as for large sized (e.g., 2000) lists. 

Additionally, clustering was more pronounced for higher discount rates. This can be 

seen by comparing Figure 4.1 and Figure 4.2, in which the first problem used m =  

15%, while the second m  =  30%. The fact that the MV-efficient nodes were found to 

cluster was used to develop the cluster heuristic to find ugoodn EU sequences. The 

cluster heuristic was invoked if the branch and prune’s MV-efficient list exceeded 

an upper limit. Thus, the EU decision procedure consisted of a combination of the 

branch and prune procedure and the cluster heuristic. Clustering was also used to 

develop the cluster heuristic’s associated upper bounding procedure, by creating a 

set of nodes for each stage using the maximum mean and minimum variance within 

each cluster.
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Figure 4.1: MV-Efficient Nodes for a Sample EXl Problem, m = 15%
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Figure 4.2: MV-Efficient Nodes for a Sample EXl Problem, m == 30%
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4.2.2 The Cluster Heuristic and Upper Bounding Procedures

The cluster heuristic’s objective was to partition nodes into clusters and identify 

one representative node from each cluster. Since the nodes within a cluster have 

fairly similar means and variances, the hope was that such an approach could find 

“good” sequences in a much more computationally efficient manner than the branch 

and prune. However, before such a heuristic could be implemented, a method was 

needed to identify the clusters. Two methods were considered. The first method was 

to calculate the EU for each node and then to determine when a “large” change in 

the EU occurred for two adjacent nodes. A large change would signal movement to 

a different cluster. This method was not used because all the EU values would have 

had to be calculated using numerical integration-a rather CPU intensive operation. 

The second method, which was the one used, exploited the fact that breaks in the 

clusters occur in the variance. Intuitively, for two adjacent nodes within the same 

cluster with with means pi and and variances <7* and 0 %, 7 =  (pi — (i2) /  

will tend to be “large” because the denominator will be close to zero. However, 7 

for two adjacent nodes in different clusters will be “relatively smaller,” since the 

denominator will be much larger while the numerator stays about the same. By 

noting when 7  becomes relatively smaller, the first node in the next cluster can be 

identified. The breakpoint value for 7  was set experimentally as described below.

The cluster heuristic and branch and prune procedure are identical with one 

exception. Once the MV-efficient list expands beyond an upper limit, nodes are 

eliminated. Since the list is built for a given stage before any nodes are eliminated, 

the maximum size can be considerably larger than the upper limit. The rationale for 

waiting until the list is built is to eliminate the worst nodes overall, not just the worst 

nodes thus far. Nodes are selected for elimination using a measure based on first
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order stochastic dominance for truncated normal distributions [31]. The heuristic 

may eliminate all but one node, or only eliminate enough nodes to fall under the 

upper limit. For two truncated normal distributions with cumulative distribution 

functions Fi(x) and F2(:r), if fii > Hi and <Ti > <r2 then Fi(x) dominates F2(i)  by 

first order stochastic dominance if and only if 7 =  (fii — fii) /  (07 — <x2) > 6, where 

8 denotes the number of standard deviations from the mean that the distributions 

are truncated (assumed to be symmetric, although rules also exist for nonsymmetric 

truncation). Thus, the cluster heuristic keeps only those nodes that could not be 

eliminated if the normal distributions were truncated 8 standard deviations from the 

mean.

Once invoked, the cluster heuristic starts with the MV-efficient node of highest 

mean and variance and ends with the MV-efficient node of lowest mean and variance. 

The heuristic compares sequentially the NPVs for each node on the MV-efficient list 

(which is kept in descending order of mean and variance) with the next node on 

the list. The comparison involves computing a value for 7 . If 7 is greater than the 

cutoff value, 6, the second node is eliminated and the first and third nodes are then 

compared. If the second node is not eliminated, the second and third nodes are then 

compared. Thus, when 7 < 6, a new cluster has been found. Note that the single 

representative node selected by the heuristic will always be the node of highest mean 

and variance within each cluster. Once the list is processed, if the number of nodes 

is still greater than the upper limit, 6 is cut in half and the process repeated until 

the resulting list is smaller than the limit. Different 8 values were tried using several 

MV-efficient lists from EXl. Most lists were reduced on a single pass to a size smaller 

than the upper limit when a value of 10 was used, and hence the initial value of 8 

was 10 standard deviations.
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The EU decision procedure is not guaranteed to find an optimal sequence when 

either the cluster heuristic is used or assets are assumed to be correlated (unless all 

the correlation coefficients are equal to the same positive value). To evaluate the 

performance of the EU decision procedure in these cases, a bounding approach was 

taken. Finding optimal sequences using total enumeration was considered compu­

tationally unreasonable based on the number of numerical integrations that would 

be required for a typical problem. Two different upper bounding procedures were 

developed, one for independent assets and the other for correlated assets. While the 

bounding procedure for the correlated case is also applicable to independent case, 

independence allows a tighter bound to be developed.

The independent asset upper bounding procedure is identical to the cluster heuris­

tic with two exceptions. First, when nodes are eliminated, the NPV variance of the 

remaining node is set equal to the variance of the node eliminated (which cannot be 

greater) to create a pseudo node. This pseudo node is better than either of the two 

nodes just considered because it MV-dominates both. At the last stage, the node of 

highest EU is found and that EU value is the upper bound. Second, the cutoff value 

6 used is larger. The rationale for a higher cutoff value is to get a tighter bound. 

At the horizon, if the sequence of highest EU is not bounded at any stage, then 

the resulting sequence is the optimal sequence. The more nodes eliminated, the less 

likely this is to occur.

The cluster heuristic and independent asset upper bounding procedure are not 

run separately from the branch and prune procedure. Rather, the branch and prune 

procedure evolves into the cluster heuristic and upper bounding procedures when the 

number of nodes on the MV efficient list exceeds the upper limit. From that point on 

in time, two MV-efficient lists are kept, one for each procedure. While lists of up to
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about 2000 nodes were found to be possible before exceeding the available computer 

memory, an upper limit of 300 nodes was used for the computational experiments. 

This limit was selected because:

• Results of EXl indicated MV-efficient lists of size 300 often clustered.

• CPU times increased significantly for larger cutoff values.

• Larger limits resulted in lists for the next stage that exceeded the available 

computer memory, since nodes were not eliminated until the complete list for 

a given stage was built (for an upper limit of 300, the largest list found was 

about 1900 nodes).

The initial cutoff value for the independent asset upper bounding procedure was set 

at 50 standard deviations.

The correlated asset upper bounding procedure uses the maximum mean and a 

lower bound on the minimum variance to calculate a bound. If all the correlation 

coefficients are positive, an upper bound can also be found by solving the problem 

assuming the assets are independent, and then that bound with the smaller EU 

used. The maximum mean is given by the EV sequence mean. A lower bound on 

the minimum variance is found by solving a shortest path problem using determin­

istic dynamic programming. The dynamic program proceeds in a forward direction, 

with the stages being the time periods, and the states being the last asset type in 

the sequence and the last asset’s minimum and maximum standard deviation for 

any service life. The optimal value function, SeqVar*(T), is a lower bound on the 

minimum variance for any sequence providing service for the first T  periods. The 

key is to find a tight lower bound on the minimum covariance. To do this, at each 

stage for each asset type J ,  a lower bound on the minimum variance is found for



www.manaraa.com

57

any sequence in which the last asset is of type J. Let SeqVar*(JyT ) be this lower 

bound, StdMin(J ,T)  be the minimum possible and StdMax(J, T) be the maximum 

possible standard deviation for asset type J  in any sequence providing T  periods of 

service for which J  is the last asset. Then:

StdMin{J , T) = Min{cr{J, T ' , T - V ) :  T  — T  =  1 , 2 , . . . ,  Nj ,  T  >  0}

StdMax(J, T) = Max{<r(J, T \  T  — T') : T  -  T ’ =  1 ,2 , . . . ,  Nj,  T  > 0} 

and the functional equation is

SeqVarm(J , T)  =  Min{SeqVar*{ J \  T )  +  a2(J, T', T  — T') +

2pjj 'StdMin{J',  T')<j (J, T \  T  -  T'),

SeqVar '(J \  T') + cr2(J, T', T  -  T') +

2PJJ.S tdM ax(J \  T')o(J , T', T  -  T )  :

T - r  = 1, 2, . . . , ^ ,  r > o ,  J' = 1, 2 , . . . , J }

At each stage, SeqVar*(T) = Min{SeqVar*(J, T ) : J  = 1 ,2 , . . . ,  J }. The boundary 

conditions are SeqVarm(J ,T  = 0) =  0 for all J.

4.2.3 Experim ent Two

The purpose of the second experiment (EX2) was to evaluate the performance 

of the cluster heuristic and the independent asset upper bounding procedure. The 

main conclusions of EX2 were:

•  The cluster heuristic and independent asset upper bounding procedure worked 

well over a wide range of problems in which assets were assumed to be inde­

pendent. The average EU to upper bound utility performance was at least 

0.9492.
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Table 4.6: EX2 Parameter Distributions

Param eter Distribution
Discount Rate U(0.15,0.30)
Horizon DU(20,50)
Asset Types DU(2,7)
Asset Service Life DU(2,14)
Asset Monetary Difference U(-0.1,0.1)

•  The utility performance measure slightly overestimated the EV performance, 

since 9 out of 60 times the best of 100 random sequences outperformed the EV 

sequence, but the bias was not considered serious.

EX2 Experimental Design and Results

The test problem generator used for EX2 was the same used for EX1, including 

the uncertainty endpoints, except the low/high input parameters were eliminated. 

Instead, these parameters were randomly drawn from the distributions shown in 

Table 4.6. The low/high parameters were eliminated because the purpose of EX2 

was to study the performance across a wide range of problems and not to study 

individual parameter effects. To increase the likelihood that the the cluster heuristic 

would be invoked, problems with short horizons and large asset monetary differences 

were not considered.

Two sets of 30 problems in which the assets were independent were run for EX2. 

The first set had low uncertainty while the second set had high uncertainty (the 

problems were generated by multiplying the regular NPV variances for the asset 

types by 100). For each set, a number of different statistics were compiled. The 

results are displayed in Tables 4.7 and 4.8. Each table is broken into three sections. 

The first section displays how many problems required the cluster heuristic, how
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Table 4.7: EX2 Problem Set 1 - Uncorrelated Assets

For the EU sequences:
10/30 required the cluster heuristic and upper bounding procedure.
9/10 cluster heuristic sequences were optimal.
0.9999 was the average EU to upper bound utility performance for the 10 cases. 
For the EV sequences:
26/30 EV sequences matched the EU sequence.
1/30 random sequences outperformed the EV sequence.
0.9369 was the average utility performance for the 30 EV sequences._________
For the CME sequences:
30/30 CME sequences matched the EU sequence.
0/30 random sequences outperformed the CME sequence.
1.0000 was the average utility performance for the 30 CME sequences.______

Table 4.8: EX2 Problem Set 2 - Uncorrelated Assets, Higher Uncertainty

For the EU sequences:
7/30 required the cluster heuristic and upper bounding procedure.
3/7 cluster heuristic sequences were optimal.
0.9492 was the average EU to upper bound utility performance for the 7 cases.
For the EV sequences:
16/30 EV sequences matched the EU sequence.
8/30 random sequences outperformed the EV sequence.
0.6475 was the average utility performance for the 30 EV sequences.________
For the CME sequences:
30/30 CME sequences matched the EU sequence.
0/30 random sequences outperformed the CME sequence.
1.0000 was the average utility performance for the 30 CME sequences._____ ■
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many of the cluster heuristic sequences were optimal, and what the average EU to 

upper bound utility performance (as given by (3.3)) was for the cluster heuristic. For 

EX2, the average EU to upper bound utility performance was computed using only 

those problems in which the heuristic was required, as opposed to basing it on the 

average of all 30 problems in the set (using a value of 1.0 for all problems that did not 

require the heuristic). The second section shows how many EV sequences matched 

the EU sequence, how many times the best of 100 random sequences outperformed 

the EV sequence, and the average utility performance (as given by (3.2)) of the EV 

sequences. The number of times the EV sequence was outperformed by the best 

of 100 random sequences was monitored to check if the utility performance measure 

would be biased. Since the utility performance measure value is set to zero if the best 

of 100 random sequences has equal or higher EU, if this were to occur frequently, 

then the performance of the EV decision procedure would tend to overestimated. 

Finally, the third section displays the same three statistics for the CME sequences. 

The results indicate:

• The cluster heuristic's average EU to upper bound utility performance was at - 

least 0.9492.

•  For the 60 problems, 17 required the cluster heuristic. Of those 17,12 heuristic 

sequences were known to be optimal. For the other 5 sequences, the average 

EU to upper bound utility performance was 0.9287, indicating the upper bound 

is generally quite tight.

•  The EV decision procedure was outperformed by the best of 100 random 9 

times out of 120, while the CME decision procedure was never outperformed. 

When the EV decision procedure was outperformed, the utility performance
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was set to 0.0-the same value as if the random and EV sequences identified 

had equal EU. Thus, on average, the utility performance was slightly higher 

for the EV decision procedure than if negative performance values had been 

allowed.

•  The EV decision procedure’s utility performance ranged from 0.6475 to 0.9369, 

with the worst performance for the high uncertainty problem set.

•  The CME decision procedure’s utility performance was 1.0, suggesting the 

CME to be an excellent decision procedure.

The two sets of problems required about 12 real-time hours and 7 CPU hours to run 

on an Apollo DN3000 workstation.

EX2 Observations

Three insights were gained from EX2. First, a particular asset type and service 

life pair frequently repeated in the EU sequence. In extreme cases, the same asset 

type with a one period service life repeated out to the horizon. Typically however, 

the first few asset type and service life pairs would vary, followed by a repeating pair, 

and ending with a different repeating pair. The repeating pairs have been observed 

in other replacement research done with similar models [15, 35].

Second, the EV decision procedure’s utility performance was better for the low 

uncertainty case as compared to the high uncertainty case. This was expected for a 

risk averse DM and illustrates the idea that the amount of uncertainty much reach 

a certain level before the EV and EU sequences fail to match.

Third, the cluster heuristic ran more frequently than the independent asset upper 

bounding procedure. For example, while the bounding procedure only needed to run
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for every third stage, the heuristic had to be run for every stage. By being able 

to create a node having the maximum mean and minimum variance within each 

cluster, the bounding procedure was able to MV-dominate many nodes the heuristic 

was forced to continue to consider.

4.2.4 Experiment Three

The results of EX1 and EX2 indicated that the combination of the branch and 

prune procedure and cluster heuristic could find either optimal or nearly optimal 

sequences for a wide range of problems when assets were assumed to be indepen­

dent. The third experiment (EX3) narrowed the focus and examined the impact of 

several model parameters on the performance of the alternative decision procedures. 

Specifically, the purpose of EX3 was to study the effects of risk aversion, correla­

tion, uncertainty, and the horizon on the utility performance of the TRAD, EV, and 

CME decision procedures, and to study the EU decision procedure’s EU to upper 

bound utility performance when assets were assumed to be correlated. The main 

conclusions of EX3 were:

• Compared to the EU decision procedure, the CME decision procedure was, 

on the average, the best since it performed at better than 99%, while the EV 

decision procedure followed at at 86%, and the TRAD decision procedure, at 

64%, was the worst.

•  The TRAD decision procedure performed poorly regardless of the level of the 

four factors.

•  The EV decision procedure performed better for negative correlation and for 

short horizons combined with low risk aversion.
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•  The CME decision procedure was a good heuristic for constant risk aversion 

because the individual asset CMEs sum to nearly the overall sequence CME.

•  The EU decision procedure’s EU to upper bound utility performance was, on 

average, 76% for positive correlation and 60% for negative correlation, with 

uncertainty having a significant effect on the performance.

EX3 Experim ental Design and Results

Due to the insights gained in the first two experiments, only four parameters were 

selected for further study in EX3. The parameters selected were those considered to 

have a significant effect on the performance of the decision procedures. They included 

the level of risk aversion, type of correlation, amount of uncertainty, and length of 

the horizon. Other parameters that could have been selected, such as the discount 

rate, number of asset types, maximum asset service life, or rate of technological 

improvement, were considered to influence more the difficulty (either in terms of the 

MV-efficient list size or CPU processing times) of finding the sequence of highest 

EU, than the utility performance of the decision procedures.

EX3 was a 2 x 3 x 2 x 2  factorial design with five replications, for a total of 

120 problems. Risk aversion, uncertainty, and the horizon were studied at two levels 

(low/high). Correlation was studied at three levels (negative, positive, and zero or 

independent). For the low level of risk aversion, z was uniformly distributed between

1.5 and 5.0, while for the high level, between 16.5 and 20.0. Uncertainty for the low 

level used uncerta =  0.1 and uncertb — 0.4. Based on a sample of ten problems (244 

mean and variance pairs), the median NPV coefficient of variation was 0.3369, with 

an average of 0.4884, minimum of 0.0820, maximum of 8.0297, and variance of 0.5876. 

Uncertainty for the high level used uncerta = 0.6 and uncertf, =  1.2. Based on a
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Table 4.9: Analysis of Variance for EX3 TRAD

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.004420 1 0.0044 0.021
C 0.155744 2 0.0779 0.368
U 0.076403 1 0.0764 0.362
H 0.367339 1 0.3673 1.738

RC 0.208925 2 0.1045 0.494
RU 0.156136 1 0.1561 0.739
RH 0.072749 1 0.0727 0.344
CU 0.065151 2 0.0326 0.154
CH 0.354630 2 0.1773 0.839
UH 0.260782 1 0.2608 1.234

RCU 0.566443 2 0.2832 1.340
RCH 0.754542 2 0.3773 1.785
RUH 0.026470 1 0.0265 0.125
CUH 0.071150 2 0.0356 0.168

RCUH 0.849309 2 0.4247 2.009
Error 20.28776 96 0.2113

TOTAL 24.2780 119

sample of ten problems (330 mean and variance pairs), the median NPV coefficient of 

variation ratio was 0.7521, with an average of 2.4423, minimum of 0.2674, maximum 

of 29.5582, and variance of 21.3342. Finally, the horizon was uniformly distributed 

between 10 and 30 periods for the low case, and between 30 and 50 periods for the 

high case.

The sequence generator for EX1 and EX2 used the random, EV, CME, and EU 

decision procedures. The TRAD decision procedure was added in EX3. The rationale 

for adding the TRAD decision procedure was twofold. First, the TRAD decision 

procedure is probably the most popular method suggested for solving replacement 

problems. Second, in EX2 it was observed that certain asset type and service life 

pairs often repeat, suggesting that the TRAD decision procedure may perform well.

The overall average utility performance for the 120 problems was 0.6396 for the
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Table 4.10: Analysis of Variance for EX3 EV

Source 
of Variance

Sum of 
Squares

Degrees 
o f Freedom

Mean
Square F0

R 0.159741 1 0.1597 1.572
C 0.161145 2 0.0806 0.793
U 0.392006 1 0.3920 3.859*
H 0.008514 1 0.0085 0.084

RC 0.077346 2 0.0387 0.381
RU 0.020780 1 0.0208 0.205
RH 0.314450 1 0.3145 3.095*
CU 0.024397 2 0.0122 0.120
CH 0.138219 2 0.0691 0.680
UH 0.007466 1 0.0075 0.074

RCU 0.012331 2 0.0062 0.061
RCH 0.086060 2 0.0430 0.424
RUH 0.000008 1 .0000 .000
CUH 0.454670 2 0.2273 2.238

RCUH 0.374584 2 0.1873 1.844
Error 9.752125 96 0.1016

TOTAL 11.9839 119

TRAD decision procedure, 0.8581 for the EV decision procedure, and 0.9937 for the 

CME decision procedure. The EU decision procedure’s average EU to upper bound 

utility performance was equal to 0.9855 for the independent case, 0.7560 for the 

positive correlation case, and 0.6026 for the negative correlation case. The problems 

required about 36 real-time hours and 24 CPU hours to run on an Apollo DN3000 

workstation. An analysis of variance was performed for the TRAD, EV, and CME 

decision procedures. The results sure shown in Tables 4.9 through 4.11. For the 

column “Source of Variation,” the factors are coded as follows: R is the level of risk 

aversion, C the correlation, U the uncertainty, and H the horizon. Fq must be at 

least F(a  =  0 .10, 1/! =  l , i /3 =  96) =  2.77 or F(0.10,2,96) =  2.37 to be significant. 

Significant factors are followed by an asterisk in the F0 column of the tables. The 

results indicate:



www.manaraa.com

66

Table 4.11: Analysis of Variance for GX3 CME

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.000376 1 0.0004 0.353
C 0.005581 2 0.0028 2.611*
U 0.003008 1 0.0030 2.814*
H 0.003048 1 0.0030 2.852*

RC 0.001632 2 0.0008 0.764
RU 0.001028 1 0.0010 0.962
RH 0.000039 1 .0000 0.037
CU 0.007006 2 0.0035 3.277*
CH 0.003328 2 0.0017 1.557
UH 0.001805 1 0.0018 1.689

RCU 0.001021 2 0.0005 0.478
RCH 0.000542 2 0.0003 0.254
RUH 0.000431 1 0.0004 0.403
CUH 0.004275 2 0.0021 2.000

RCUH 0.000243 2 0.0001 0.114
Error 0.102617 96 0.0011

TOTAL 0.1360 119

•  The TRAD decision procedure performed poorly under all conditions since 

there are no significant factors in Table 4.9

• U and RH are significant in Table 4.10 for the EV decision procedure. The EV 

decision procedure performed better, on average, for low U (0.9152) than for 

high U (0.8009). It also performed better, on average, for for low R and low 

H (0.9373) than for high R and low H (0.7620). Results were about the same, 

on average, for low R, high H and high R, high H (0.8518 and 0.8812). These 

last results suggest the the EV decision procedure is less sensitive to the level 

of risk aversion as the horizon increases.

•  C, U, H, and CU are significant in Table 4.11 for the CME decision procedure, 

although because the CME performed so well there is very little total error.
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Table 4.12: Average Upper Bound Utility Performance

R U H

Positive 
Corr. Avg. 

Upper 
Bound 
Utility 

Performance

Negative 
Corr. Avg. 

Upper 
Bound 
Utility 

Performance
1 1 1 0.9406 0.7533
1 h 1 0.6164 0.3121
h 1 1 0.8485 0.7601
h h 1 0.4872 0.3174
1 1 h 0.7956 0.8733
1 h h 0.8785 0.6121
h 1 h 0.8955 0.7162
h h h 0.5859 0.4761

Over a11 0.7560 0.6026

The EU decision procedure’s EU to upper bound utility performance was, on av­

erage, 0.7560 for positive correlation and 0.6026 for negative correlation. Table 4.12 

shows the average values for each cell, with “1” being the low case and “h” the 

high case. The performance for some cells is very good, but for others quite poor. 

An analysis of variance for positive correlation is shown in Table 4.13 and indicates 

uncertainty to be significant. The performance was better for low uncertainty. Ta­

ble 4.14 shows the analysis of variance for negative correlation. Again uncertainty 

is significant, as well as the horizon. Thus, these results suggest that as uncertainty 

increases the EU decision procedure’s EU to upper bound utility performance de­

creases. However, these results may mask the effect of uncertainty on the tightness of 

the bound compared to the optimal solution. As discussed below, higher uncertainty 

may result in the variance used for the bound being considerably smaller than the 

variance of the optimal solution.
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Table 4.13: Analysis of Variance for Positive Correlation

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.10709 1 0.10709 1.73
U 0.52019 1 0.52019 8.42*
H 0.04315 1 0.04315 0.70

RU 0.11538 1 0.11538 1.87
RH 0.00051 1 0.00051 0.01
UH 0.13164 1 0.13164 2.13

RUH 0.07895 1 0.07895 1.28
Error 1.97708 32 0.06178

TOTAL 2.97397 39

EX3 Observations

Three insights were gained from EX3. First, despite the frequency of sequences 

with assets that repeat, the TRAD decision procedure performed poorly. This may 

have been due to the fact that assets generally repeated later in the sequence when 

they had less impact.

Second, as in EX2, the CME decision procedure performed amazingly well. The
t

most likely reason is that the CMEs are “almost” additive for the exponential utility 

function with constant risk aversion. With constant risk aversion, the uncertainty 

penalty is independent of the mean. For example, using c =  0.008483 for a mean 

of 100 and variance of 100,000, the CME =  -324.193. For the same c and variance, 

but with a mean of -100, the CME =  -524.193. For both cases, the CME is just 

the mean minus 424.193. With the individual asset NPVs in a sequence assumed 

to be normally distributed, the variances (plus any covariance terms) sum to the 

variance of the sequence. As long as the individual asset variances are of the same 

order of magnitude as the total variance for the sequence, the sum of the penalties 

for individual assets will be close to the total penalty for the sequence. For EX3,
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Table 4.14: Analysis of Variance for Negative Correlation

Source 
of Variance

Sum of 
Squares

Degrees 
o f Freedom

Mean
Square F0

R 0.04932 1 0.04932 0.89
U 1.19904 1 1.19904 21.73*
H 0.17881 1 0.17881 3.24*

RU 0.00024 1 0.00024 .00
RH 0.05817 1 0.05817 1.05
UH 0.09144 1 0.09144 1.66

RUH 0.00032 1 0.00032 0.01
Error 1.76542 32 0.05517

TOTAL 3.34276 39

since the number of assets in a sequence could never be more than 50 (the maximum 

horizon) and was typically much less, the variance for each of the individual assets 

was similar in order of magnitude to the sequence variance, especially when there 

was no correlation. Continuing with c = 0.008483, suppose a sequence was made 

up of 10 assets, had a mean equal to M E A N , and variance equal to 100.0. If the 

assets in the sequence were independent, and each had a mean of (0.1 x M E A N )  

and variance of 10.0, then the CME for each asset is (0.1 x M E A N )  - 0.04241939. 

For the entire sequence, the CME =  M E A N  - 0.42419379. Adding the CMEs for 

the 10 individual assets results in a value of M E A N  - 0.4241939, or a difference of 

just 0 .00000011.

To verify the CMEs are almost additive for the exponential utility function with 

constant risk aversion, an experiment was run using 100 randomly generated prob­

lems. The first 50 were generated using the regular NPV method, while the last 

50 were generated using the AE NPV method. All the assets were assumed to be 

independent. For each problem, 100 random sequences were generated, and for each 

sequence the following two performance measures were computed, with n being the
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number of assets in the sequence:

owt- j-n- I £"=i CME(asseij) -  CME(sequence)|
CME difference =  -  J ---------- |CME(sequence)|-------------

lu (Ej=i CME(assetj)) -  EU(sequence)|
EU difference----------1-------- |EU(sequence)|----------------

The average CME difference for the 50 regular NPV problems (based on a total of 

5000 sequences) was 0.000141%, while for the 50 AE NPV problems the value was 

0.000362%. The average EU difference values were 0.000005% for the 50 regular 

NPV problems and 0.000007% for the 50 AE NPV problems.

For each problem, the best random sequence out of 100 based on the EU for 

the sequence, was compared to the best random sequence out of 100 based on the 

sum of the individual asset CMEs. For the 50 regular NPV problems, the sequences 

matched all 50 times. For the 50 AE NPV problems, 49 out of 50 times the sequences 

matched. To verify that it was not trivial to select the best out of 100 sequences, the 

average difference between the best sequence and the next best (that did not match) 

sequence was also computed both in terms of CME and EU as follows:

|CME(best sequence) -  CME(next best sequence)|
CME difference = ------------------ |CME(best sequence)!------------------

niT 1<jr |EU(best sequence) — EU(next best sequence)|
EU difference-------------------- |EU(best sequence')|-----------------

The average CME difference was 4.38% for the 50 regular NPV problems and 0.82% 

for the 50 AE NPV problems. For the EU difference the values were 5.74% and 

0.72%. Both indicate that selecting the best sequence was not trivial, especially for 

the AE NPV problems.

Overall, the results strongly support the theory that the CME decision procedure 

is an excellent heuristic for a DM with constant risk aversion because the CMEs for 

the individual assets sum to almost the sequence CME. While the CMEs sure almost
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additive, the EUs are not. A small experiment run with 10 problems (1000 sequences 

total) found the average absolute EU difference between the sum of the individual 

assets and the entire sequence to be 38.9%.

The third observation was the EU decision procedure’s EU to upper bound utility 

performance was probably better than the results of EX3 indicated. Generating 

tight bounds was difficult, especially in the negative case. For the 40 problems 

with positive correlation, the best upper bound for 36 was found by solving the 

problem assuming the assets to be independent. However, in the negative case, the 

bound had to be developed using the maximum mean and a lower bound on the 

minimum variance. For negative correlation coefficients, the lower bound for the 

minimum variance was driven down towards zero, underestimating the true variance 

by a considerable margin for a typical problem. As the results of EX5 will show, 

the EU sequence is fairly stable for small changes in the variance forecasts. Thus, 

although it is possible for the EU decision procedure to prune the optimal sequence, 

even if this occurs, the sequence found should still typically be “good.”

4.2.5 Experim ent Four

As discovered in EX2 and EX3, the CME decision procedure is an excellent 

heuristic for a DM with constant risk aversion. To study the impact of decreasing 

risk aversion, experiment four (EX4) was performed. For EX4, in addition to the 

exponential utility function with constant risk aversion used for EX2 and EX3, the 

logarithmic and power utility functions which have decreasing risk aversion were also 

used. The purpose of EX4 was to determine if the EU sequences were similar for the 

three different types of utility functions, and to study the performance of the CME 

decision procedure for DMs with decreasing risk aversion. The main conclusions of
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• The EU sequences for the exponential utility function were very similar to the 

EU sequences for both the logarithmic and power utility functions when the 

risk aversion levels were similar.

•  The CME decision procedure performed poorly for utility functions with de­

creasing risk aversion, and thus, in general, is not a good heuristic.

EX4 Experimental Design and Results

The sequence generator for EX4 used three different types of utility functions:

• The exponential, U{w) — (1 — e-cw)/c, with constant risk aversion, r{w) =  c.

•  The logarithmic, U(w) =  ln(u> +  b), (w +  b) > 0, with decreasing risk aversion, 

r(tu) =  l/(to  +  b).

• The power, U(w) =  (w -  wq)**, wo < w for all w, 0 < 0 < 1, with with 

decreasing risk aversion, r(tu) =  (1 — P)/{w — t^o)-

To compare intelligently the impact of the different utility functions, the level of 

risk aversion needs to be similar for all three. Since r(u») for the logarithmic and 

power utility functions depends on the value of w, the r(u))’s for the three utility 

functions can only match at one point. Given the method used for EX2 and EX3 to 

estimate the relevant range for the utility function, this single point logically should 

fall within that range. Three different approaches were considered for EX4. The first 

approach was to match the risk aversion levels at the lower endpoint. However, then 

the DM would be less risk averse over the entire range of outcomes and comparing
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such utility functions would provide less insight. The second approach, matching at 

the upper endpoint, had the reverse problem.

The third approach was to set the r(to)’s equal at the mean NPV for the EV 

sequence, using c as the anchor. Then for approximately half of the relevant range 

the level of risk aversion for the logarithmic and power utility functions would be 

lower than the exponential, and higher for the other half. However, with the normally 

distributed NPVs having infinite tails, the values for 6, /?, and to0 that make the 

r(to)’s equal could fail to satisfy the restrictions on the logarithmic and power utility 

functions. The r(to)’s are equal for the exponential and logarithmic utility functions 

when b =  1/c - to, for given values of c and to. Even if the lower tail were truncated 

(say a t the mean minus 3.5 standard deviations), there could still be cases in which 

the value of 6 would not be large enough to satisfy (to +  6) > 0. For example, for 

an EV sequence with a mean NPV of 0 and variance of 816.32, truncating a t 3.5 

standard deviations yields a range of -100 to 100, with c =  ln(1.5)/100 =  0.00405 

to c =  ln(20)/100 =  0.02996. For c =  0.02996, b = 33.38 and if to =  -100 then 

(to +  6) < 0 .

The r(to)’s are equal for the exponential and power utility functions when (3 = 

1 — c(to — to0), for given values of c, to, and to0. The problem in this case is that 

may be negative. Continuing with c =  0.02996 and assuming too =  *101, /3 =  

1 — 0.02996(0 +  101) =  —2.02596. In general for truncated distributions, very low 

risk aversion levels (e.g., c =  0.00405) will typically satisfy (to +  b) > 0  and 0 < /? < 

1, but higher levels of risk aversion can create problems.

To avoid as many of these problems as possible, two changes were made for EX4. 

First, the test problem generator was changed to generate only positive mean NPVs, 

since negative mean NPVs are more likely to create problems for the logarithmic
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and power utility functions. Positive mean NPVs were generated by using the AE 

method, and by drawing the mean AE from a strictly positive uniform distribution 

(with endpoints of 100 and 10,000). The regular NPV method could have been 

modified to only produce positive NPV means by, for example, making the first cost 

a large positive value. However, such modifications change the basic structure and 

may affect the relative rankings of the asset type and service life pairs. Second, 

the numerical integration procedure used for the sequence generator was changed to 

truncate the normally distributed NPVs at ±3.5 standard deviations from the mean.

However, these two changes were still not sufficient to ensure the logarithmic and 

power utility function restrictions would always be satisfied. Thus, the numerical 

integration routine was modified to detect if the restrictions were violated and to 

correct any violations found. To do so, the values for b and (3 were set as follows:

• b = m ax{l/c — fiev, -  (two -  1)}, where w0 =  ftev -  3.5aev is the lower NPV 

endpoint, is the mean of the NPV for the EV sequence, and is the 

variance of the NPV for the EV sequence. The numerical integration routine 

set (w + b) = 1“20 for any (tv + b) < l -20.

•  $  = max{l — c(fiev -  w0),0.001}, where w0 = jtev -  3.5<ret, is the lower NPV 

endpoint, fin  is the mean of the NPV for the EV sequence, and a \v is the 

variance of the NPV for the EV sequence. The numerical integration routine 

set (u> -  w0) =  0 for any (tu — w0) < 0 .

When b or could not be set so that the level of risk aversion for the logarithmic 

and power utility functions matched the exponential at pev, the resulting level of risk 

aversion was always lower at / w
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EX4 used the same 2 x 3 x 2 x 2 factorial design with five replications that 

was used for EX3. The four factors (level of risk aversion, uncertainty, correlation, 

and horizon) were also the same, with the ranges the same except for uncertainty. 

Uncertainty had to be changed because the NPVs were generated using the AE 

method. The AE uncertainty endpoints were set such that the resulting median 

NPV coefficient of variation was approximately the same as the value used in EX3. 

Uncertainty for the low level used uncerta =  0.5 and uncerta =  1.0. Based on a 

sample of ten problems (323 mean and variance pairs), the median NPV coefficient 

of variation was 0.3266 (vs. 0.3369 for EX3), with an average of 0.3800, minimum of 

0.1356, maximum of 1.1543, and variance of 0.0322. Uncertainty for the high level 

used uncerta =  1.0 and uncerU =  2.8. Based on a sample of ten problems (431 mean 

and variance pairs), the median NPV coefficient of variation was 0.7630 (vs. 0.7521 

for EX3), with an average of 0.9361, minimum of 0.2604, maximum of 3.5340, and 

variance of 0.2824.

For each problem, the TRAD, EV, CME, and EU sequences were found for each 

of the three different utility functions. Thus, twelve potentially different sequences 

were found in total. Using these twelve sequences, a total of thirteen performance 

statistics were calculated. The first nine statistics were the utility performance values 

(as given by (3.2)) for the TRAD, EV, and CME sequences by utility function. 

Then, four special performance statistics were calculated. These special statistics 

were designed to compare the CME and EU sequences across utility functions, to 

determine how different the sequences selected were. To do so, exponential utility 

was used as the base and all the sequences were compared using their associated 

exponential utility. The first two statistics compared the exponential CME sequence 

to the logarithmic and power CME sequences, while the last two compared the
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Table 4.15: EX4 Overall Results

Regular Utility Performance
Utility Function TRAD EV CME
Exponential
Logarithmic
Power

0.4141
0.4298
0.4515

0.8965
0.9258
0.9305

0.9859
0.5406
0.3001

Specia Performance
Comparison CME EU
Exponential-Logarithmic 
Exponential-Power

0.5320
0.2710

0.9802
0.9801

exponential EU sequence to the logarithmic and power EU sequences. Specifically, 

letting exp denote the exponential utility function, the first two are of the form:

EUexp(log or power CME sequence) — EUexp(best of 100 exp random) 
EUexp(exp CME sequence) — EUexp(best of 100 exp random)

while the last two are of the form:

EUexpjlog or power EU sequence) — EUexp(best of 100 exp random) 
EUexp(exp EU sequence) — EUexp(best of 100 exp random)

For both, if the best of 100 random outperformed the sequence being compared, the 

value was set to zero.

The sequence generator required about 21 real-time hours, and 13 Apollo DN3000 

CPU hours to solve the 120 problems. The average value for each performance 

measure is shown in Table 4.15. Comparing the overall results for EX3 with the 

overall exponential results for EX4 shows:

• The TRAD decision procedure’s utility performance drops from 0.6396 for EX3 

to 0.4141 for EX4.

• The EV decision procedure’s utility performance does slightly better for EX4 

(0.8965 vs. 0.8518).
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Table 4.16: Summary of EX4 Significant Factors

E xponential Logarithm ic Power
Significant Significant Significant

Sequence Factor(a) Factor(a) Factor(s)
TRAD R,C,H,RCUH C.H.RCUH RCUH

EV R.C.U ,H,RU,CU ,CH .UH.CUH R.C.U,H.CU.CH.UH,CUH C.U.H.CU.CH,UH.CUH
CME - R.U.RU R.U.RU

• The CME decision procedure’s utility performance drops slightly from 0.9937 

for EX3 to 0.9859 for EX4.

Comparing the overall results of Table 4.15 across the three utility functions indicates 

the average performance was about the same except for the CME decision procedure. 

The CME decision procedure results diminish for the logarithmic and power utility 

functions. Looking at the special performance statistics in Table 4.15, for the CME 

decision procedure the average values are close to the corresponding average regular 

values indicating different sequences were selected for the three utility functions, 

especially for the exponential and power functions. The high EU values provide 

strong evidence that very similar EU sequences were being selected for the three 

utility functions.

An analysis of variance was performed for each of the nine regular utility perfor­

mance measure statistics. The results are displayed in Tables B.l through B.9. A 

summary of the significant factors is shown in Table 4.16. Comparing the significant 

factors for each type of sequence across the three utility functions shows:

• The TRAD decision procedure’s significant factors differ only slightly. The 

significant factors for the logarithmic utility function are a  subset of the ex­

ponential factors. The significant factors for the power utility function are a 

subset of the logarithmic factors.
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•  The EV decision procedure’s significant factors also differ only slightly. The 

significant factors for the logarithmic utility function are a subset of the expo­

nential factors, and the significant factors for the power utility function are a 

subset of the logarithmic factors.

• The CME decision procedure’s significant factors differ, but the significant 

factors for the logarithmic utility function match those of the the power utility 

function.

EX4 Observations

EX4 yielded three insights. First, the EV decision procedure’s utility performance 

was better for the logarithmic and power utility functions than for the exponential as 

the level of risk aversion increased. For low risk aversion, the EV decision procedure’s 

utility performance was 0.9594 when the exponential utility function was used, but 

decreased to 0.9554 when the logarithmic utility function was used, and decreased to 

0.9519 when the power utility function was used. However, for high risk aversion, the 

EV decision procedure’s utility performance was 0.8335 when the exponential utility 

function was used, but increased to 0.8962 when the logarithmic utility function was 

used, and increased to 0.9091 when the power utility function was used. One possible 

explanation is that in order to satisfy the parameter restrictions, the logarithmic and 

power utility functions were forced to use a level of risk aversion lower than that used 

by the exponential utility function. As found in EX3, the utility performance of the 

EV decision procedure tends to decrease as the level of risk aversion increases.

Second, the CME decision procedure was not a good heuristic for decreasing risk 

aversion. The special CME performance statistics show that the selected sequences 

differed for the three utility functions. However, since the EU sequences for the
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three were very similar and the CME decision procedure performed well when the 

exponential utility function was used, the utility performance of the CME decision 

procedure for the logarithmic and power functions would probably have increased if 

the CME decision procedure had assumed constant risk aversion for these cases.

Third, the regular and AE methods to generate NPVs, produced problems with 

different characteristics even when the uncertainty levels were matched. In general, 

the AE method generated problems with lower relative uncertainty. When relative 

uncertainty was very low, the EV and EU sequences matched no matter how high 

the absolute uncertainty for the problems considered in this research. CPU times 

for the problems generated using the AE method, were only about half those for the 

regular method. This would indicate that the dominating asset type and service life 

pairs were easier to identify when the AE method was used.

4.2.6 Experim ent Five

As the NPV forecasts are being developed by a DM, inconsistencies in the fore­

casts may arise. For example, demand forecasts made by the marketing department 

may differ from those made by the production department. The sequence of highest 

EU could depend on which forecast is used. To gain some insight into the impact 

of changes in the forecasts, the fifth experiment (EX5) was performed. The purpose 

of EX5 was to study the sensitivity of the sequence of highest EU to changes in 

the mean and/or variance of the NPVs. A base set of NPVs was used to find the 

sequence of highest EU, and this sequence was used as the basis for comparison. 

The mean and/or variance of each of the base NPVs was then perturbed, and the 

perturbed values were used to find a new sequence of highest EU. This new sequence 

was then compared to the “base” sequence (the sequence of highest EU found for
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the base set of NPVs). The main conclusions of EX5 were:

• Perturbing the mean caused the selected sequence of highest EU to differ quite 

dramatically from the base sequence, while perturbing the variance by the same 

amount had much less impact.

•  Perturbing both the mean and variance provided results similar to perturbing 

only the mean.

•  If the mean was always perturbed in the same direction, the magnitude of the 

difference between the selected sequence of highest EU and the base sequence 

remained relatively constant for all levels of perturbation.

EX5 Experimental Design and Results

EX5 used the same 2 x 3 x 2 x 2 factorial design with five replications that was 

used for both EX3 and EX4. The four factors (level of risk aversion, uncertainty, 

correlation, and horizon) were the same, and the ranges used were the same as for 

EX3. For EX5, only the exponential utility function was used. The same set of 

problems was solved four different times. In the first case, only the means were 

perturbed. For the second case, only the variances were perturbed. In the third 

case, the means and the variances were both perturbed. Finally, for the fourth 

case, only the means were perturbed and only in the same direction. Four different 

levels of perturbation were used. For the first three cases, the base values were 

perturbed uniformly by ±(0.0,0.25), ±(0.25,0.50), ±(0.50,0.75), and ±(0.75,1.0). 

Each mean and/or variance was perturbed independently. For the fourth case, the 

base means were perturbed uniformly by (—0.5,—0.25), (—0.25,0), (0,0.25), and 

(0.25,0.5). Each mean was perturbed independently. Thus, for each problem a total
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Table 4.17: EX5 Overall Results

Perturbation Level
Case ( 0 .00 ,0 .25 ) ( 0 . 25 ,0 .50 ) ( 0 .50 ,0 . 75) ( 0 .75 , 1.00)
1. Mean 0.4023 0.2530 0.2701 0.2030
2. Variance 0.8465 0.7670 0.7301 0.7048
3. Mean and Variance 0.4140 0.2555 0.2407 0.1579

( - 0 .50 ,  - 0 .25 ) ( - 0 .25 ,0 .00 ) ( 0 .00 ,0 .25 ) ( 0 .25 ,0 .50)
4. Mean, Same Direction 0.5347 0.5381 0.5293 0.5071

of 17 potentially different potentially different sequences of highest EU had to be 

found (the base sequence plus one sequence for for each of the four perturbed sets 

of NPVs for each of the four cases). To avoid using the computationally intensive 

EU decision procedure, the CME decision was used in EX5 to find the sequence of 

highest EU. The rationale was that in EX3, the CME decision procedure was found 

to perform well when the exponential utility function was used, and finding 17 EU 

sequences for each of the 120 problems would have required over 100 real-time hours 

based on the EX3 times.

The performance measure used for EX5 compared the CME sequence found using 

the perturbed forecasts with the CME sequence found using the original forecasts 

(the base sequence). The best of 100 random sequences found using the original 

forecasts was used as the benchmark. To make the comparison, the EU using the 

base NPVs was calculated for CME sequence found using the perturbed forecasts. 

The resulting performance measure was then:

EU( CME sequence using perturbed forecasts) — EU (beat of 100 random)
EU  (CME base sequence) — EU(best of 100 random)

If the best of 100 outperformed the CME sequence found using the perturbed fore­

casts, the value was set to zero.

Each of the four runs required about 11 real-time hours and 10 CPU hours on
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Table 4.18: Summary of EX5 Significant Factors

Case

(0.00,0.25) 
Significant 
Factor(s)

<0.25,0.50)
Significant
Factor(s)

(0.50,0.75)
Significant
Factor(s)

(0.75,1.00)
Significant
Factor(s)

1. Mean
2. Variance
3. Mean and Variance

H,RC,CU,UH,RCU,CUH
B.C.RH.CH.RCH

RCU
U.H

R,U,H,RCU
R,U,RU
R.RCUH

CU
R.U.H.RU

(.0.50,-0.25) (-0.25,0.00) (0.00,0.25) (0.25,0.50)
4. Mean, Same Direction 6,h6,ftH,A£H C.RCH r h ,u h ,r£ h

an Apollo DN3000 workstation. The average results for the 120 problems are shown 

in Table 4.17. For the first case, perturbing the means by up to 25% resulted in a 

performance value of 0.4023, indicating the perturbed and base sequences were on 

average quite different. Beyond 25%, the performance value falls to less than 0.30. 

Comparing the first two cases across levels, shows that perturbing only the means 

has a greater impact than perturbing only the variances. For the third case, the 

performance values are similar to the first case except for the 75% to 100% level. At 

this level, it appears the variance had enough of an impact to cause the additional 

difference. Finally, for the fourth case, the performance values were about 0.53 for 

all four levels.

An analysis of variance was performed for each of the four cases at each of the 

four levels of forecast change. The results are displayed in Tables B.10 - B.25. A 

summary of the significant factors is shown in Table 4.18. Comparing the significant 

factors for each type of sequence across the three utility functions shows no strong 

pattern of significant factors across the different levels for each of the four cases.

EX5 Observations

As the results of EX5 show, perturbing the means by as little as 25% caused the 

perturbed and base sequences to differ quite dramatically. While if the means were
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always perturbed in the same direction the results were better, the performance was 

still only in the 50% range. In practical terms, even if the sequences differ, as long 

as the first asset types match, the DM has less incentive to try to resolve incon­

sistencies. However, if the first asset type is sensitive to changes in the forecasts, 

then inconsistencies present a problem. Since, for a given level, perturbing the vari­

ances has a much smaller impact than perturbing the means, increasing the variance 

(uncertainty) may be the easiest way to resolve inconsistencies.

4.3 Summary of Parameter Effects

The MV model parameters were found to have varying levels of impact. The 

parameters were the level of risk aversion, type of correlation, level of uncertainty, 

horizon, asset monetary difference, number of asset types, maximum asset service 

life, discount rate, and rate of technological improvement. The impact for each is 

described below. The summary includes the parameter’s effect on the performance 

of the alternative decision procedures, its influence on the difficulty of finding the 

sequence of highest EU both in terms of the maximum size of the MV-efficient set and 

the CPU time required, and any unusual or unexpected behavior that was observed.

The level of risk aversion had an impact on the performance of the EV deci­

sion procedure as well as on the CME procedure when the DM had decreasing risk 

aversion. However, the amount of impact was influenced by the level of uncertainty. 

As was found in EX3, the EV decision procedure performed best for low risk aversion 

and for low uncertainty. EX4 illustrated that the EU sequences obtained using three 

different utility functions were very similar when the risk aversion levels for all three 

were similar. However, for the logarithmic and power utility functions, which reflect 

decreasing risk aversion, the performance of the CME procedure was poor. Since
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the branch and prune procedure is based on MV-dominance and does not use the 

level of risk aversion until a choice must be made at the final stage, the difficulty of 

finding the sequence of highest EU was not affected by the level of risk aversion.

C o rre la tio n  had an impact on both the performance of the EV and CME deci­

sion procedures, and increased the CPU times compared to the independent case. In 

EX3, the EV decision procedure was found to perform best for negative correlation 

and worst for positive correlation. Negative correlation reduced the variance (uncer­

tainty) causing the EV and EU sequences to more closely match. For constant risk 

aversion, the CME decision procedure always found an optimal sequence when assets 

were assumed to be independent. However, the CME performance decreased slightly 

when the assets were assumed to be correlated, especially when the correlation was 

negative. To obtain the EU sequence when assets were assumed to be correlated, all 

the covariance terms had to be calculated which increased the CPU times.

As u n c e rta in ty  increased, the performance of the EV procedure decreased unless 

the level of risk aversion was very low. The level of uncertainty was expressed in terms 

of the median NPV coefficient of variation. As was found in EX2, the EV and EU 

sequences began to differ when the median NPV coefficient of variation was about 

0.3 and the NPVs were generated in the regular manner. For the AE method of 

generating the NPVs, differences were not observed until ratio was slightly higher 

due to the lower relative uncertainty. The sequence of highest EU was easier to find 

when uncertainty was high since larger monetary differences typically existed among 

the asset type and service life pairs.

The horizon  influenced the performance of the EV and CME decision procedures 

as well as the difficulty of obtaining the sequence of highest EU. As the horizon 

increased, the CME decision procedure sometimes selected suboptimal assets late in
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the sequence. At these later time periods, the effects of discounting often reduced 

the mean NPVs to near zero. Since the utility function was assumed to be almost 

linear near zero, the CME decision procedure was, in effect, selecting assets based 

on the highest EV. In EX3, the combined effect of the horizon and the level of risk 

aversion was found to be a significant factor for the EV decision procedure. The 

EV decision procedure's utility performance was best for low risk aversion and short 

horizons. As was expected, longer horizons typically resulted in both higher numbers 

of MV-efficient sequences and higher CPU times.

Both the asse t m o n e ta ry  difference and n u m b er o f a sse t ty p es  were found 

to have little impact on the performance of the alternative decision procedures, but 

to impact the maximum number of MV-efficient nodes and CPU times. If the asset 

monetary difference was large, then an asset type and service life pair could dominate. 

Typically, the larger the differences between the asset type and service life pairs, the 

smaller the CPU times that were required. Since a  few asset type and service life 

pairs often repeated in the sequences, the number of asset types made little difference 

in the performance of alternative decision procedures. However, as the number of 

asset types increased, CPU times increased because more computations had to be 

performed at each stage.

The m ax im um  asse t serv ice life had little impact on the performance of the 

alternative decision procedures, again because a few asset type and service life pairs 

often repeated. However, more so than any other parameter except the horizon, the 

maximum asset service life significantly influenced the CPU times. The CPU times 

for a maximum life of 14 periods were typically 20 times those for a  maximum life 

of 3 periods.

The d isco u n t r a te  had little influence on the performance of the alternative



www.manaraa.com

86

decision procedures, but as it increased, the sequence of highest EU become harder 

to obtain. As EX1 showed, higher discount rates diminished the differences among 

the asset type and service life pairs, especially if the rate of technological improvement 

was low. With only small differences, the MV-efficient set grew rapidly and clustered. 

Higher discount rates resulted in stronger clustering.

Since the ra te  of technological im provem ent was always selected randomly, 

the amount of influence on the performance of the alternative decision procedures 

cannot be estimated. For deterministic cash flows, Bean, Lohmann, and Smith [5] 

found the TRAD decision procedure to perform better when technology improved 

slowly rather than rapidly. The impact of the rate of technological improvement 

on the difficultly of obtaining EU sequences was easier to estimate. Problems in 

which the rate of technology was greater than the discount rate turned out to be 

easy to solve because the effects of discounting did not diminish the differences in 

the asset type and service life pairs over time. Slow technological change meant that 

any differences would tend to be diminished much faster, with the MV-efficient set 

size and CPU times increasing.

The method used to handle technological improvement was observed to have 

two weaknesses. To forecast easily NPVs of future assets, the computational ex­

periments assumed the DM inputs the NPVs for just the assets currently available. 

Future assets were then assumed to evolve deterministically from the base set (i.e., 

N P V {J ,T ,N )  = N P V (J ,0 ,N )  x F{J,T)  /  (l +  m)r ). The first weakness is that for 

a given asset type, if a particular combination of mean and variance dominates, then 

it will dominate at all points in time. For example, consider two different sequences 

that provide service for the first three periods. In the first sequence, asset type J  is 

replaced each year with a new version of asset type J . In the second sequence, asset
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type J  is keep in service for the full three periods. If the first sequence MV-dominates 

the second sequence, then it will also MV-dominate the second sequence at any com­

mon starting period in the future. If the F (J ,T )s are similar across different asset 

types, then dominance will tend to hold at all points in time as well. This pattern 

of MV-dominance may be one of the reasons why particular asset type and service 

life pairs often repeated in the sequences for the test problems.

The second weakness of the method used to handle technological improvement 

arises when computing the mean and variance for assets with negative mean NPVs. 

Using N P V (J ,T ,N )  =  N PV(J ,0 ,N )  x F(J,T)  /  (I + m)r , the resulting mean is 

then E[NPV(J,T,N)\  = E[iVPV(J,0, N)] x F (J ,T ) /  (1 + m )T, while the variance 

is given by Var[NPV(J, 7\ N)] =  V&t[NPV(JyQ, N)] x F(J, T)3 /  (1 + m)3T. When 

the mean NPV is positive and technology improves (i.e., F (J, T) > 1.0), both the 

mean and the variance of the NPV increase. When the mean NPV is negative, and 

technology improves (i.e., F(JyT) < 1.0), the mean NPV again increases (becomes 

less negative). However, the mean NPV can never become positive. The result is 

that the absolute increase in the mean NPV is smaller (and decreasing in time) as 

compared to the positive mean NPV case. Additionally, the variance of the NPV 

decreases instead of increasing. This weakness could be mitigated by expanding the 

model to allow technological improvement for multiple cash flow components (e.g., 

capital costs, operating expenses, revenues) rather than for just the overall NPV (42].
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CH APTER V  

SUM M ARY AND EXTENSIONS

This dissertation examined replacement decision making under uncertainty. The 

research objectives were to develop a procedure to find the sequence of highest EU, 

gain insight about replacement decisions under uncertainty, and compare the per­

formance of several alternative decision procedures with the EU decision procedure. 

The MV model is the first utility-based replacement model to be developed. A 

utility-based model is desirable because DMs often view the impact of monetary 

gains and losses differently and such a view would typically be inconsistent with 

an EV criterion that treats equally the impact of both. Considering risk directly 

adds a dimension that traditional sensitivity analysis cannot address. Moreover, a 

utility-based model can solve a wider range of problems since EV is a special case of 

EU.

The MV model allows the number of assets available for selection at each point 

in time to vary, and offers the the DM considerable flexibility in specifying the 

NPV distributions. If the DM assumes that assets evolve over time and that future 

versions are related to the assets currently available by a function of the time they are 

installed, the NPVs can be made up of any number of cash flow components. Each 

cash flow component can change over time due to technology and inflation, and the

88
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discount rate may vary by period. The MV model is also the first replacement model 

to consider asset correlation across time. However, with correlation the branch and 

prune procedure is only a heuristic and finding tight bounds is difficult.

This research makes two additional contributions beyond development of the first 

utility-based replacement model. First, the average performance of the EU decision 

procedure was found to be better than that of the TRAD and EV decision proce­

dures, and better than that of the CME decision procedure for a DM with decreasing 

risk aversion. The TRAD decision procedure corresponds to making the best decision 

considering only the assets available currently. This approach is taken frequently by 

DMs who feel it is too difficult to forecast the monetary outcomes for assets available 

in the future. In EX3, the TRAD decision procedure’s average performance was just 

0.64. Furthermore, no factors were found to have a significant effect on the perfor­

mance. Thus, the TRAD decision procedure performs poorly even for DMs with 

low risk aversion and for problems with short horizons relative to the EU decision 

procedure. In EX3, the EV decision procedure’s average performance was 0.86, with 

uncertainty and the level of risk aversion combined with the horizon having a sig­

nificant effect on the performance. When uncertainty, characterized by the median 

NPV coefficient of variation, reached about 0.3, the EV and EU sequences began to 

differ. The EV decision procedure performed best (0.94) when both the level of risk 

aversion and the horizon were low. The CME decision procedure’s average perfor­

mance was 0.99 in EX3 for a DM with constant aversion to risk. Thus, a DM with 

constant risk aversion would have little incentive to use the more computationally 

intensive EU decision procedure. However, the CME decision procedure’s average 

performance fell less to than 0.56 in EX4 for a DM with decreasing aversion to risk.

The second contribution was that finding all the MV-efficient (or Pareto-optimal)
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sequences before applying a decision criterion was found to be a viable solution ap­

proach for replacement problems of realistic size. The MV model considered problems 

with horizons of up to 50 periods, the number of asset types available at each period 

as high as 7, and asset service lives of up to 14 periods. No previous study had tried 

to find all the Pareto-optimal solutions except for small problems used for illustrative 

purposes. Rather, some decision criterion other than EU was selected in advance, 

or only a subset of the Pareto-optimal solutions was found. The advance selection 

requires the problem to be resolved each time the decision criterion changes.

Several factors which increased the solution difficulty (either the maximum size 

of the MV-efficient list or the CPU times) were identified. These factors were the 

horizon, maximum asset service life, discount rate, and amount of difference between 

the rate of technological improvement across asset types. The longer the horizon 

and maximum service life, the more sequences possible. Higher discount rates and 

smaller differences in the rate of technological improvement caused the monetary dif­

ferences across asset types and service lives to decrease. The MV-efficient sequences 

were found to cluster and clustering was used to develop a heuristic. The average 

performance of the cluster heuristic as compared to an upper bound was 0.99 in EX3 

for independent assets. Other heuristics that have been used to find subsets of all the 

Pareto-optimal solutions do not rely on clustering [2, 20]. Thus, the cluster heuristic 

represents another alternative. However, it may only be applicable for problems in 

which discounting is used, given that clustering was found to be more pronounced 

for higher discount rates.
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5.1 Summary

Replacement projects consume a significant portion of many firms’ capital bud­

get. As the marketplace becomes more competitive, decisions about what equipment 

to replace, what new technology to adopt, and when to do it become increasingly 

important. Forecasting the data required to make intelligent replacement decisions 

is typically difficult and filled with uncertainty. Utility theory, a popular method 

in many fields for dealing with decision making under risk, has been incorporated 

into capital budgeting models. However, utility has yet to be directly considered in 

replacement models. The MV model was developed to study replacement decision 

making for a DM who desires to maximize EU. It envisions the DM trying to identify 

the best sequence of assets to provide a desired service over time. The DM will typ­

ically have a number of different asset types from which to choose, and be uncertain 

about the cash flow streams that characterize each asset type. The MV model makes 

the following major assumptions:

• The DM is not subject to capital rationing and the economic value of the 

service provided by an asset can be characterized by its NPV distribution.

• The NPV distribution for the service provided by an asset is normally dis­

tributed.

• The NPVc of assets in a given sequence are independent or Markov-correlated 

across time. If Markov-correlated, the NPV of an asset being considered for 

addition to a sequence is correlated only with the NPV of the immediately 

preceding asset in the sequence.
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• A single asset is assumed to be in service at all times and there are a finite 

number of independent assets from which to choose at each decision point.

•  The DM’s objective is to maximize EU over the specified, deterministic horizon. 

For a given sequence, EU =  J U(w)fnpv(w\fi,<r2)dw, where the utility function, 

U(w), is a continuous, concave, monotonically increasing function of money, 

and f npv is the density function for the sequence NPV.

For the computational experiments, three alternative solution procedures were 

compared to the EU decision procedure. The alternative solution procedures were 

the three most common in the literature: TRAD, EV, and CME. The TRAD se­

quence was formed by selecting the asset type and service life pair with the highest 

expected annual equivalent value at each replacement epoch. The EV sequence had 

the maximum expected NPV, while the CME sequence had the maximum total CME, 

found by summing the CME for each asset in the sequence. Both sequences were 

found by solving a longest path problem using deterministic dynamic programming. 

The sequence of highest EU was found using a branch and prune procedure based 

on MV-dominance. The branch and prune procedure is similar to the dynamic pro­

gramming algorithms used to find the EV and CME sequences, except that instead 

of identifying a single best partial sequence at each time period, a MV-efficient set 

of partial sequences is found. A sequence is MV-efficient if no other sequence has 

a greater mean and equal variance, or a greater than or equal mean and a smaller 

variance.

To allow a wide range of problems to be considered, a test problem generator 

with a set of variable parameters was built. The parameters included the horizon, 

number of alternative asset types, asset annual cost pattern, rate of asset techno­
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sequential assets, DM’s level of risk aversion, amount of uncertainty in the DM’s 

forecasts, and discount rate. Experiments were then performed to determine if the 

branch and prune could optimally solve a wide range of problems, under what con­

ditions did the EU, EV, and CME sequences differ, what was the impact of different 

types of utility functions, and how sensitive was the EU sequence to changes in the 

forecasts. Three main results were obtained from the first two experiments. First, 

the MV-efficient nodes for the branch and prune procedure could sometimes exceed 

the available computer memory. Second, the MV-efficient nodes were found to clus­

ter and clustering was used to develop a heuristic. Third, the EU decision procedure 

performed well when assets were assumed to be independent. The third experiment 

studied the impact of risk aversion, correlation, uncertainty, and the horizon on the 

performance of the alternative decision procedures. Results showed the EU, EV, 

and CME sequences matched for low uncertainty and low risk aversion. The CME 

procedure was an excellent decision procedure for constant risk aversion because the 

CME of each asset sums to almost the CME for the entire sequence. Correlation, 

higher levels of risk aversion, and higher uncertainty tended to cause the EU, EV, 

and CME sequences to differ. The fourth experiment compared three different types 

of utility functions and found the EU sequences tended to match for similar levels of 

risk aversion. The CME was also found to perform quite poorly for decreasing risk 

aversion. The final experiment found the EU sequence to be much more sensitive to 

changes in the means than the variances.
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5.2 Extensions

The MV model could be extended in several different ways. First, for a specific 

problem, the expected value of perfect information could be approximated using 

Monte Carlo simulation. To do this, the EU sequence would first be found. Then 

for each simulation replication, a realization for each of the DM’s forecasts would 

be drawn. These realizations would be used to find the optimal sequence as well 

as the realized value of the EU sequence. The difference between the optimal and 

EU sequence NPV would represent a realization of the value of perfect information. 

After n simulation replications, the expected value of perfect information could be 

estimated. Any change in the DM’s forecasts would require the simulation to be 

repeated. To avoid having to repeat the simulation, an analytical approach, such as 

used by Moore and Chen [40] for a capital budgeting problem, may be able to be 

used for very simple problems.

Second, an attem pt could be made to develop additional dominance criteria to 

eliminate some MV-efficient nodes in the branch and prune procedure, such that 

for the independent asset case the procedure is still optimal. Given that the EU 

to upper bound utility performance of the cluster heuristic was on average 0.95 in 

EX2, it is clear that eliminating nodes using stochastic dominance rules for truncated 

normal distributions is very effective. Since in most problems the effect of discounting 

reduces the impact of assets later in the sequence, it may be possible at some point to 

start eliminating certain partial sequences without compromising optimality. Insight 

may to be able to be gained by studying the cases when suboptimal selections are 

made. Such additional criteria could improve the efficiency of the branch and prune 

procedure and reduce or even eliminate the need for the cluster heuristic.
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Third, research could be conducted from a utility-based capital budgeting per­

spective to study the EV and EU decision procedures for selecting individual re­

placement projects. For example, the capital budgeting approach of Thompson and 

Thuesen [54] could be used. Computational experiments could then be run to try 

to determine the conditions under which choosing the best alternative for individual 

replacement projects based on EV results in suboptimal capital allocation.

Fourth, two additional assumptions could be made so that an additive temporal 

utility function would be appropriate. For a temporal utility function, the EU of 

a sequence would be the weighted sum of the EU for the cash flow in each period. 

This approach could then be compared to determining the EU based on the NPV 

of the sequence, as was done in this research. The additional assumptions would 

be that utility independence across time periods is appropriate for the DM, and 

that the DM can supply the appropriate cash flow forecasts for each time period. 

By considering a wide range of possible problems, the comparison could provide 

additional insight into replacement decision making under uncertainty as well as 

identify some of the conditions under which the two approaches differ. In their 

utility-based capital budgeting research, Thompson and Thuesen [55] compared a 

temporal approach based on a project’s cash flows in each period with an approach 

based on the project’s NPV.
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A P P E N D IX  A

EXAM PLE OF HOW  SELECTING THE  
ASSET W ITH  THE HIGHEST PR O BA BILITY  

OF BEIN G  THE OPTIM AL FIRST ASSET  
CA N  BE SUBO PTIM AL

*

Consider a DM faced with a choice of keeping an asset D  currently in service or 

replacing it with a  new asset C. The DM's objective is to maximize expected value, 

the discount rate is 0.10, the horizon is one year, taxes are not involved, and the DM 

is uncertain about only the operating expenses. D has no salvage value while C, 

which costs $13.64 new, will be worth $10 in one year. Let X  be the random variable 

representing JTs operating expense for the next year and Y  be the random variable 

representing the expense for C. The DM estimates X  to be uniformly distributed 

between 12 to  15.8, and Y  to be triangularly distributed with a minimum value of 

5, maximum of 16, and most likely of 6 . A decision tree expressed in cost terms 

is shown in Figure A l. At T=1 the expected cost for D = E[X] =  13.9, while the 

expected cost for C — 5 +  E[Y] =  5 +  9 =  14. Thus, if the DM wants to maximize 

expected value, the optimal choice is D  because it has the lower expected cost.

The approach used by Lohmann [35] combines simulation and deterministic dy­

namic programming. For each replication of the simulation, a  realization is drawn 

from the appropriate distribution for each random variable. The best sequence that
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T=0 T=1

X

(13.64 x 1.10) -10 + Y

Figure A.l: Decision Tree

begins with each asset currently available is then found using deterministic dynamic 

programming, and the first asset’s service life and the overall sequence NPV are 

recorded. The best sequence for each asset currently available is found so that the 

performance measures estimated after n replications are based on an equal number 

of observations. Once the best sequence has been found for each asset currently 

available, the overall optimal sequence for the current replication is identified and 

the optimal first asset recorded. After n replications, the probability of each asset 

currently available being the overall optimal first asset is estimated, along with the 

corresponding probability distributions for the service life and NPV. The DM then 

uses subjective judgement to interpret the results and make a  decision.

For the problem above, suppose the decision rule used by the DM was to select the 

asset that had the highest probability of being the optimal first asset. The simulation 

involves generating realizations for X  and Y. Dynamic programming is not required
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because if 5 + Y  < X, then C is the lower cost choice and hence the optimal first 

asset. Such a simulation was replicated 25,000 times and the results indicated C to 

be the optimal first asset 53.2 percent of the time. To check the simulation results, 

conditional probability was used to analytically determine that the Prob{5 + Y  < 

X} is 53.1 percent. Thus, the DM would select C rather than making the optimal 

decision by selecting D.
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A PPE N D IX  B

ANALYSIS OF VARIANCE TABLES FOR EX4 
AND EX5

N ote: In the tables in Appendix B, factors that are significant at a  =  0.10 are 

followed by an asterisk in the F0 column.
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Table B.l: Analysis of Variance for EX4 TRAD, Exponential Utility

Source 
of Variance

Sum of 
Squares

Degrees 
o f Freedom

Mean
Square F0

R 0.526412 1 0.5264 3.878*
C 0.844650 2 0.4223 3.111*
U 0.095812 1 0.0958 0.706
H 0.491602 1 0.4916 3.621*

RC 0.059529 2 0.0298 0.219
RU 0.023300 1 0.0233 0.172
RH 0.012585 1 0.0126 0.093
CU 0.211932 2 0.1060 0.781
CH 0.076817 2 0.0384 0.283
UH 0.067303 1 0.0673 0.496

RCU 0.012321 2 0.0062 0.045
RCH 0.173469 2 0.0867 0.639
RUH 0.005228 1 0.0052 0.039
CUH 0.102222 2 0.0511 0.377

RCUH 1.908452 2 0.9542 7.029*
Error 13.03219 96 0.1358

TOTAL 17.6438 119

Table B.2: Analysis of Variance for EX4 TRAD, Logarithmic Utility

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.318917 1 0.3189 2.243
C 1.005692 2 0.5028 3.537*
U 0.079239 1 0.0792 0.557
H 0.405768 1 0.4058 2.854*

RC 0.119609 2 0.0598 0.421
RU 0.017615 1 0.0176 0.124
RH 0.003679 1 0.0037 0.026
CU 0.129350 2 0.0647 0.455
CH 0.294852 2 0.1474 1.037
UH 0.114420 1 0.1144 0.805

RCU 0.015545 2 0.0078 0.055
RCH 0.185621 2 0.0928 0.653
RUH 0.000357 1 0.0004 0.003
CUH 0.204477 2 0.1022 0.719

RCUH 1.409211 2 0.7046 4.956*
Error 13.64848 96 0.1422

TOTAL 17.9529 119
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Table B.3: Analysis of Variance for EX4 TRAD, Power Utility

Source 
of Variance

Sum of 
Squares

Degrees 
o f Freedom

M ean
Square F0

R 0.106657 1 0.1067 0.665
C 0.549621 2 0.2748 1.714
U 0.272893 1 0.2729 1.702
H 0.215387 1 0.2154 1.343

RC 0.144071 2 0.0720 0.449
RU 0.130168 1 0.1302 0.812
RH 0.012949 1 0.0129 0.081
CU 0.020044 2 0.0100 0.063
CH 0.308582 2 0.1543 0.962
UH 0.265369 1 0.2654 1.655

RCU 0.096909 2 0.0485 0.302
RCH 0.036892 2 0.0184 0.115
RUH 0.038280 1 0.0383 0.239
CUH 0.431513 2 0.2158 1.346

RCUH 1.168450 2 0.5842 3.643*
Error 15.39372 96 0.1604

TOTAL 19.1915 119

Table B.4: Analysis of Variance for EX4 EV, Exponential Utility

Source 
o f Variance

Sum of 
Squares

Degrees 
o f Freedom

M ean
Square F0

R 0.475221 1 0.4752 13.219*
C 0.335837 2 0.1679 4.671*
U 0.859031 1 0.8590 23.896*
H 0.361163 1 0.3612 10.047*

RC 0.099943 2 0.0500 1.390
RU 0.251324 1 0.2513 6.991*
RH 0.065270 1 0.0653 1.816
CU 0.318652 2 0.1593 4.432*
CH 0.400221 2 0.2001 5.567*
UH 0.172987 1 0.1730 4.812*

RCU 0.029674 2 0.0148 0.413
RCH 0.167682 2 0.0838 2.332
RUH 0.005080 1 0.0051 0.141
CUH 0.369276 2 0.1846 5.136*

RCUH 0.093437 2 0.0467 1.300
Error 3.451066 96 0.0359

TOTAL 7.4559 119
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Table B.5: Analysis of Variance for EX4 EV, Logarithmic Utility

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.104984 1 0.1050 4.173*
C 0.307487 2 0.1537 6.111*
U 0.393272 1 0.3933 15.631*
H 0.325735 1 0.3257 12.947*

RC 0.103493 2 0.0517 2.057
RU 0.025376 1 0.0254 1.009
RH 0.047862 1 0.0479 1.902
CU 0.280549 2 0.1403 5.575*
CH 0.163458 2 0.0817 3.248*
UH 0.170431 1 0.1704 6.774*

RCU 0.026411 2 0.0132 0.525
RCH 0.055433 2 0.0277 1.102
RUH 0.003848 1 0.0038 0.153
CUH 0.162803 2 0.0814 3.235*

RCUH 0.011270 2 0.0056 0.224
Error 2.415343 96 0.0252

TOTAL 4.5978 119

Table B.6: Analysis of Variance for EX4 EV, Power Utility

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.054776 1 0.0548 2.430
C 0.294833 2 0.1474 6.540*
u 0.446639 1 0.4466 19.815*
H 0.305061 1 0.3051 13.534*

RC 0.070917 2 0.0355 1.573
RU 0.027648 1 0.0276 1.227
RH 0.029957 1 0.0300 1.329
CU 0.262295 2 0.1311 5.818*
CH 0.181554 2 0.0908 4.027*
UH 0.236814 1 0.2368 10.506*

RCU 0.046724 2 0.0234 1.036
RCH 0.031901 2 0.0160 0.708
RUH 0.011882 1 0.0119 0.527
CUH 0.167862 2 0.0839 3.724*

RCUH 0.018707 2 0.0094 0.415
Error 2.163887 96 0.0225

TOTAL 4.3515 119
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Table B.7: Analysis of Variance for EX4 CME, Exponential Utility

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.010507 1 0.0105 1.145
C 0.013915 2 0.0070 0.758
U 0.014357 1 0.0144 1.565
H 0.017655 1 0.0177 1.924

RC 0.015731 2 0.0079 0.857
RU 0.004701 1 0.0047 0.512
RH 0.007511 1 0.0075 0.819
CU 0.014526 2 0.0073 0.792
CH 0.012341 2 0.0062 0.673
UH 0.009800 1 0.0098 1.068

RCU 0.023356 2 0.0117 1.273
RCH 0.018541 2 0.0093 1.011
RUH 0.002692 1 0.0027 0.294
CUH 0.015289 2 0.0076 0.833

RCUH 0.027975 2 0.0140 1.525
Error 0.880719 96 0.0092

TOTAL 1.0896 119

Table B.8: Analysis of Variance for EX4 CME, Logarithmic Utility

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 5.487145 1 5.4871 53.555*
C 0.152103 2 0.0761 0.742
U 1.802685 1 1.8027 17.594*
H 0.158773 1 0.1588 1.550

RC 0.147439 2 0.0737 0.720
RU 2.590644 1 2.5906 25.285*
RH 0.086972 1 0.0870 0.849
CU 0.034787 2 0.0174 0.170
CH 0.018783 2 0.0094 0.092
UH 0.024425 1 0.0244 0.238

RCU 0.174159 2 0.0871 0.850
RCH 0.017850 2 0.0089 0.087
RUH 0.248662 1 0.2487 2.427
CUH 0.112143 2 0.0561 0.547

RCUH 0.116856 2 0.0584 0.570
Error 9.836037 96 0.1025

TOTAL 21.0095 119
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Table B.9: Analysis of Variance for EX4 CME, Power Utility

Source 
o f Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 2.764369 1 2.7644 26.847*
C 0.005469 2 0.0027 0.027
u 5.087518 1 5.0875 49.409*
H 0.005877 1 0.0059 0.057

RC 0.100141 2 0,0501 0.486
RU 1.667244 1 1.6672 16.192*
RH 0.164614 1 0.1646 1.599
CU 0.212371 2 0.1062 1.031
CH 0.298324 2 0.1492 1.449
UH 0.000094 1 0.0001 0.001

RCU 0.100509 2 0.0503 0.488
RCH 0.049674 2 0.0248 0.241
RUH 0.116155 1 0.1162 1.128
CUH 0.146735 2 0.0734 0.713

RCUH 0.161837 2 0.0809 0.786
Error 9.884791 96 0.1030

TOTAL 20.7657 119

Table B.10: Analysis of Variance for EX5 Mean Only, (0.00,0.25)

Source 
of Variance

Sum of  
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.012722 1 0.0127 0.065
C 0.123068 2 0.0615 0.315
U 0.039664 1 0.0397 0.203
H 0.103194 1 0.1032 0.528

RC 0.081395 2 0.0407 0.208
RU 0.035750 1 0.0358 0.183
RH 0.246968 1 0.2470 1.263
CU 0.431538 2 0.2158 1.103
CH 0.327803 2 0.1639 0.838
UH 0.023686 1 0.0237 0.121

RCU 0.219333 2 0.1097 0.561
RCH 0.477763 2 0.2389 1.221
RUH 0.017387 1 0.0174 0.089
CUH 0.492615 2 0.2463 1.259

RCUH 0.581285 2 0.2906 1.486
Error 18.77763 96 0.1956

TOTAL 21.9918 119
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Table B .ll: Analysis of Variance for EX5 Mean Only, (0.25,0.50)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.072382 1 0.0724 0.532
C 0.065437 2 0.0327 0.241
U 0.002456 1 0.0025 0.018
H 0.241295 1 0.2413 1.774

RC 0.290534 2 0.1453 1.068
RU 0.011619 1 0.0116 0.085
RH 0.001147 1 0.0011 0.008
CU 0.264999 2 0.1325 0.974
CH 0.017389 2 0.0087 0.064
UH 0.120863 1 0.1209 0.889

RCU 1.385582 2 0.6928 5.094*
RCH 0.018787 2 0.0094 0.069
RUH 0.005548 1 0.0055 0.041
CUH 0.388991 2 0.1945 1.430

RCUH 0.393463 2 0.1967 1.447
Error 13.05639 96 0.1360

TOTAL 16.3369 119

Table B.12: Analysis of Variance for EX5 Mean Only, (0.50,0.75)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.413355 1 0.4134 2.701
C 0.563570 2 0.2818 1.841
U 0.000310 1 0.0003 0.002
H 0.118140 1 0.1181 0.772

RC 0.386757 2 0.1934 1.264
RU 0.003389 1 0.0034 0.022
RH 0.348175 1 0.3482 2.275
CU 0.234623 2 0.1173 0.767
CH 0.369096 2 0.1845 1.206
UH 0.005292 1 0.0053 0.035

RCU 0.093747 2 0.0469 0.306
RCH 0.036208 2 0.0181 0.118
RUH 0.025354 1 0.0254 0.166
CUH 0.297816 2 0.1489 0.973

RCUH 0.112093 2 0.0560 0.366
Error 14.69182 96 0.1530

TOTAL 17.6998 119
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Table B.13: Analysis of Variance for EX5 Mean Only, (0.75,1.00)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.060113 1 0.0601 0.444
C 0.220042 2 0.1100 0.813
U 0.001262 1 0.0013 0.009
H 0.374084 1 0.3741 2.765

RC 0.063917 2 0.0320 0.236
RU 0.008413 1 0.0084 0.062
RH 0.222598 1 0.2226 1.645
CU 0.879870 2 0.4399 3.252*
CH 0.104130 2 0.0521 0.385
UH 0.018593 1 0.0186 0.137

RCU 0.190978 2 0.0955 0.706
RCH 0.398493 2 0.1992 1.473
RUH 0.111464 1 0.1115 0.824
CUH 0.033271 2 0.0166 0.123

RCUH 0.095149 2 0.0476 0.352
Error 12.98729 96 0.1353

TOTAL 15.7697 119

Table B.14: Analysis of Variance for EX5 Variance Only, (0.00,0.25)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.139093 1 0.1391 1.497
C 0.125823 2 0.0629 0.677
U 0.016028 1 0.0160 0.173
H 0.556668 1 0.5567 5.992*

RC 0.678913 2 0.3395 3.654*
RU 0.079141 1 0.0791 0.852
RH 0.042430 1 0.0424 0.457
CU 0.534587 2 0.2673 2.877*
CH 0.253631 2 0.1268 1.365
UH 0.344069 1 0.3441 3.704*

RCU 0.689896 2 0.3449 3.713*
RCH 0.395465 2 0.1977 2.128
RUH 0.043753 1 0.0438 0.471
CUH 0.674076 2 0.3370 3.628*

RCUH 0.240826 2 0.1204 1.296
Error 8.918255 96 0.0929

TOTAL 13.7327 119
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Table B.15: Analysis of Variance for EX5 Variance Only, (0.25,0.50)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.053329 1 0.0533 0.340
C 0.003100 2 0.0016 0.010
U 0.652624 1 0.6526 4.156*
H 1.138934 1 1.1389 7.253*

RC 0.015219 2 0.0076 0.048
RU 0.000095 1 0.0001 0.001
RH 0.000895 1 0.0009 0.006
CU 0.190506 2 0.0953 0.607
CH 0.261004 2 0.1305 0.831
UH 0.258357 1 0.2584 1.645

RCU 0.480351 2 0.2402 1.529
RCH 0.219364 2 0.1097 0.698
RUH 0.018252 1 0.0183 0.116
CUH 0.177566 2 0.0888 0.565

RCUH 0.226366 2 0.1132 0.721
Error 15.07582 96 0.1570

TOTAL 18.7718 119

Table B.16: Analysis of Variance for EX5 Variance Only, (0.50,0.75)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.453762 1 0.4538 2.831*
C 0.216407 2 0.1082 0.675
U 0.726585 1 0.7266 4.533*
H 0.029653 1 0.0297 0.185

RC 0.377332 2 0.1887 1.177
RU 0.933942 1 0.9339 5.827*
RH 0.036987 1 0.0370 0.231
CU 0.057724 2 0.0289 0.180
CH 0.316324 2 0.1582 0.987
UH 0.010428 1 0.0104 0.065

RCU 0.427281 2 0.2136 1.333
RCH 0.266483 2 0.1332 0.831
RUH 0.199247 1 0.1992 1.243
CUH 0.209763 2 0.1049 0.654

RCUH 0.062361 2 0.0312 0.195
Error 15.38650 96 0.1603

TOTAL 19.7108 119
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Table B.17: Analysis of Variance for EX5 Variance Only, (0.75,1.00)

Source 
of Variance

Sum of 
Squares

Degrees 
o f Freedom

M ean
Square F0

R 0.562612 1 0.5626 3.930*
C 0.163401 2 0.0817 0.571
U 0.827964 1 0.8280 5.783*
H 0.479212 1 0.4792 3.347*

RC 0.358865 2 0.1794 1.253
RU 1.064305 1 1.0643 7.434*
RH 0.219700 1 0.2197 1.535
CU 0.113894 2 0.0569 0.398
CH 0.336604 2 0.1683 1.176
UH 0.000450 1 0.0005 0.003

RCU 0.250615 2 0.1253 0.875
RCH 0.255006 2 0.1275 0.891
RUH 0.092174 1 0.0922 0.644
CUH 0.502296 2 0.2511 1.754

RCUH 0.088868 2 0.0444 0.310
Error 13.74464 96 0.1432

TOTAL 19.0606 119

Table B.18: Analysis of Variance for EX5 Mean and Variance, (0.00,0.25)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.516805 1 0.5168 2.794*
C 0.945305 2 0.4727 2.555*
U 0.149145 1 0.1491 0.806
H 0.033438 1 0.0334 0.181

RC 0.086611 2 0.0433 0.234
RU 0.028411 1 0.0284 0.154
RH 0.687670 1 0.6877 3.718*
CU 0.053348 2 0.0267 0.144
CH 1.246533 2 0.6233 3.370*
UH 0.002102 1 0.0021 0.011

RCU 0.298530 2 0.1493 0.807
RCH 1.007162 2 0.5036 2.723*
RUH 0.045319 1 0.0453 0.245
CUH 0.075064 2 0.0375 0.203

RCUH 0.407952 2 0.2040 1.103
Error 17.75629 96 0.1850

TOTAL 23.3397 119
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Table B.19: Analysis of Variance for EX5 Mean and Variance, (0.25,0.50)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 1.115908 1 1.1159 7.584*
C 0.535148 2 0.2676 1.818
U 0.506804 1 0.5068 3.444*
H 0.448281 1 0.4483 3.047*

RC 0.001759 2 0.0009 0.006
RU 0.126360 1 0.1264 0.859
RH 0.061615 1 0.0616 0.419
CU 0.167327 2 0.0837 0.569
CH 0.065324 2 0.0327 0.222
UH 0.005125 1 0.0051 0.035

RCU 0.760220 2 0.3801 2.583*
RCH 0.645483 2 0.3227 2.193
RUH 0.010761 1 0.0108 0.073
CUH 0.048353 2 0.0242 0.164

RCUH 0.425902 2 0.2130 1.447
Error 14.12574 96 0.1471

TOTAL 19.0501 119

Table B.20: Analysis of Variance for EX5 Mean and Variance, (0.50,0.75)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.476264 1 0.4763 3.396*
C 0.316522 2 0.1583 1.129
U 0.003621 1 0.0036 0.026
H 0.354237 1 0.3542 2.526

RC 0.112662 2 0.0563 0.402
RU 0.314605 1 0.3146 2.243
RH 0.021994 1 0.0220 0.157
CU 0.077420 2 0.0387 0.276
CH 0.266595 2 0.1333 0.951
UH 0.129985 1 0.1300 0.927

RCU 0.218564 2 0.1093 0.779
RCH 0.056552 2 0.0283 0.202
RUH 0.000440 1 0.0004 0.003
CUH 0.103020 2 0.0515 0.367

RCUH 1.370756 2 0.6854 4.887*
Error 13.46270 96 0.1402

TOTAL 17.2859 119
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Table B.21: Analysis of Variance for EX5 Mean and Variance, (0.75,1.00)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.013802 1 0.0138 0.112
C 0.363115 2 0.1816 1.469
U 0.018589 1 0.0186 0.150
H 0.145035 1 0.1450 1.173

RC 0.099717 2 0.0499 0.403
RU 0.097532 1 0.0975 0.789
RH 0.021228 1 0.0212 0,172
CU 0.204662 2 0.1023 0.828
CH 0.228251 2 0.1141 0.923
UH 0.000857 1 0.0009 0.007

RCU 0.427938 2 0.2140 1.731
RCH 0.225417 2 0.1127 0.912
RUH 0.002843 1 0.0028 0.023
CUH 0.184459 2 0.0922 0.746

RCUH 0.064160 2 0.0321 0.260
Error 11.86760 96 0.1236

TOTAL 13.9652 119

Table B.22: Analysis of Variance for EX5 Mean,Same Direction, (-0.50,-0.25)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

Mean
Square F0

R 0.147807 1 0.1478 0.816
C 0.094835 2 0.0474 0.262
U 0.132832 1 0.1328 0.734
H 0.001362 1 0.0014 0.008

RC 0.122172 2 0.0611 0.337
RU 0.201935 1 0.2019 1.115
RH 0.591231 1 0.5912 3.266*
CU 0.526680 2 0.2633 1.455
CH 1.329042 2 0.6645 3.670*
UH 0.053144 1 0.0531 0.294

RCU 0.166136 2 0.0831 0.459
RCH 0.189320 2 0.0947 0.523
RUH 0.264668 1 0.2647 1.462
CUH 0.350770 2 0.1754 0.969

RCUH 0.142854 2 0.0714 0.395
Error 17.38038 96 0.1810

TOTAL 21.6952 119
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Table B.23: Analysis of Variance for EX5 Mean,Same Direction, (-0.25,0.00)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.001187 1 0.0012 0.007
C 1.104026 2 0.5520 3.146*
U 0.000000 1 .0000 .000
H 0.015715 1 0.0157 0.090

RC 0.958876 2 0.4794 2.733*
RU 0.326965 1 0.3270 1.864
RH 0.567165 1 0.5672 3.233*
CU 0.065439 2 0.0327 0.187
CH 0.527275 2 0.2636 1.503
UH 0.010608 1 0.0106 0.060

RCU 0.170804 2 0.0854 0.487
RCH 1.104504 2 0.5523 3.148*
RUH 0.180820 1 0.1808 1.031
CUH 0.322985 2 0.1615 0.921

RCUH 0.137964 2 0.0690 0.393
Error 16.84201 96 0.1754

TOTAL 22.3364 119

Table B.24: Analysis of Variance for EX5 Mean,Same Direction, (0.00,0.25)

Source 
of Variance

Sum of 
Squares

Degrees 
o f Freedom

Mean
Square F0

R 0.070365 1 0.0704 0.355
C 1.132349 2 0.5662 2.860*
U 0.019844 1 0.0198 0.100
H 0.109654 1 0.1097 0.554

RC 0.141809 2 0.0709 0.358
RU 0.028115 1 0.0281 0.142
RH 0.209180 1 0.2092 1.057
CU 0.889976 2 0.4450 2.248
CH 0.501413 2 0.2507 1.266
UH 0.055476 1 0.0555 0.280

RCU 0.349468 2 0.1747 0.883
RCH 1.156598 2 0.5783 2.921*
RUH 0.005428 1 0.0054 0.027
CUH 0.139145 2 0.0696 0.351

RCUH 0.282640 2 0.1413 0.714
Error 19.00621 96 0.1980

TOTAL 24.0977 119
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Table B.25: Analysis of Variance for EX5 Mean,Same Direction, (0.25,0.50)

Source 
of Variance

Sum of 
Squares

Degrees 
of Freedom

M ean
Square F0

R 0.001469 1 0.0015 0.008
C 0.781693 2 0.3908 2.140
U 0.036110 1 0.0361 0.198
H 0.005587 1 0.0056 0.031

RC 0.086744 2 0.0434 0.237
RU 0.403339 1 0.4033 2.208
RH 0.681572 1 0.6816 3.732*
CU 0.574158 2 0.2871 1.572
CH 0.148293 2 0.0741 0.406
UH 0.767466 1 0.7675 4.202*

RCU 0.808309 2 0.4042 2.213
RCH 1.368168 2 0.6841 3.745*
RUH 0.031399 1 0.0314 0.172
CUH 0.025787 2 0.0129 0.071

RCUH 0.337494 2 0.1687 0.924
Error 17.53417 96 0.1826

TOTAL 23.5918 119
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